COMPU'I'A'I'IONA
MA'I'I'IEMATICS




COMPUTATIONAL
MATHEMATICS



H. . Nasmmuga, H. C. Hy6posekas, O. II. Kpama,
T'. JI. CmupHOB

Brruncanreabpnas MateMaTHmKa

I/IBI[{ITOJTBCTBO «Bpicmasg mxoxa» MockBa



. L Danilina, N. S. Dubrovskaya,
0. P. Kvasha, G. L. Smirnov

N

COMPUTATIONAL
MATHEMATICS

W3
A 4D
041D

Mir Publishers Moscow



Translated from Russian
by Irene Aleksanova

First published 1988

Revised from the 1985 Russian edition

Ha awneaulickom asvike

Printed in the Union of Soviet Socialist Republics

ISBN 5-03-000275-8 © UsparensctBo «Bricmaa mkoaay, 1985
© English translation, Mir Publishers,
1988



Preface

The rapid development of computer engineering in
recent times has led to an expansion of application of
mathematics. Quantitative methods have been introduced
into practically every sphere of human activity. The
use of computers in the economy requires skilled spe-
cialists who have a command of the methods of computa-
tional mathematics.

Computational mathematics is one of the principal
disciplines necessary for the preparation of specialists
for various branches of economy. By studying it students
acquire theoretical knowledge and practical skill to
solve various applied problems with the aid of mathemati-
cal models and numerical methods that are realized on a
computer.

This study aid assumes that the reader is aware of the
elementary concepts of higher mathematics, i.e. contin-
uity, the derivative and the integral. It covers three
large divisions of mathematics: “Algebraic Methods”
(Ch. 2-6), “Numerical Methods of Analysis” (Ch. 1, 7, 8)
and “Numerical Methods of Solving Differential Equa-
tions” (Ch. 9, 10).

The theoretical material presented is illustrated by nu-
merous examples. Each chapter is concluded by exer-
cises for independent work.

The following designations are used in the bock: the
signs (] and B are used for the beginning and end of the
proof of an assertion and the signs A and A for the be-
ginning and end of the solution of a problem.

We wish to express our gratitude to Assistant Professor
N. I. Ionkin and L. V. Matveeva who reviewed the manu-
script and made valuable remarks which thus improved
the text,

Authors
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Introduction

Before beginning the exposition of the material, we
shall briefly characterize computational mathematics,
for which purpose we shall answer the following three
questions:

(1) What is computational mathematics?

(2) What are the distinctive features of computational
mathematics which allow it to be a special division of
mathematics?

(3) What is the significance of computational mathe-
matics for the economy?

1. The term “computational mathematics” means now
a division of mathematics which studies problems con-
nected with the use of computers.

We can distinguish three trends in computational
mathematics. The first trend is connected with the use of
computers in various fields of research and applications
and includes, in particular, numerical solution of various
mathematical problems. The second trend is connected
with the elaboration of new numerical methods and algo-
rithms and perfecting the old ones. The third trend is
connected with the problems of the interaction of man
and computer.

This book is devoted to the lirst trend, namely, the use
of numerical methods when solving applied problems.

The foundation on which computational mathematics
is constructed is composed of various computing faci-
lities, computers first of all, whose rapid development is
the most characteristic feature of the technological
progress today. Thus, during the last thirty years, the
speed ol computation increased from one operation per
second (with the use of a slide rule) to 3 000 000 opera-
tions per second, i.e. 3-10° times. It is appropriate to
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recall that from the time when a steam engine was in-
vented the speed of travel increased from 13 km per hour
(the speed of a horse) to 40 000 km per hour (the speed
of a cosmic vehicle), i.e. only 3-10% times.

2. We can use the following examples to illustrate the
characteristic features of computational mathematics
which distinguish it from pure mathematics.

From the point of view of a “pure” mathematician, to
solve a problem is to prove the existence of its solution
and show a process which leads to a solution. For a pro-
grammer, the time of obtaining a solution, i.e. the rate
of convergence of the process, is often a more important
factor. Thus, it is known that a solution of n simultaneous
algebraic equations can be theoretically obtained for
any specified n as a result of a finite number of operations,
say, with the aid of the method of Cramer or Gauss.
Therefore, from the viewpoint of a “pure” mathematician,
a problem of this kind is considered to be solved. Howe-
ver, when these methods are used in practical applica-
tions, two difficulties, which can not always be overcome,
are often encountered. The first difficulty is that for a
sufficiently large n the number of operations, although
finite, is so large that it is impossible to carry out all
of them even with the use of the most powerful computers.
Thus, to solve a system of n equations by Cramer’s
method, we must perform rn-n! operations, and this consti-
tutes 4.6-101° operations for n = 20. Then, with the rate
of 3.108 operations per second a computer must operate
continuously for half a million years. Gauss’ method
proves to be more efficient. With the use of this method,
the number of operations needed to solve the same prob-
lem is of the order of n®.

However, such a large number of operations generates
a second principal difficulty: the errors resulting from all
operations accumulate and exert such a great influence
on the final result that it often becomes far distant from
the true solution.

Nowadays exact methods are usually used for solving
systems of equations when their order is not higher than
103. Therefore, from the point of view of a programmer,
the problem of solving a system whose order is higher
than 102 is not at all trivial. To solve such a system, ite-



introduction 13

rative methods are used which are approximate but pos-
sess a significant advantage of not accumulating compu-
tational errors from iteration to iteration. Thus we deal
with a seemingly paradoxical situation, but one that is
typical of numerical methods, namely, that approximate
algorithms are preferred to exact ones.

3. The essential expansion of the fields of application
of computational mathematics, including its inculcation
into economy, can be explained by the fact that natural
phenomena and the phenomena of social life, different
in their sense, are often similar in formal structure and
can, consequently, be described by the same mathemati-
cal models. We can therefore use the same numerical
methods to solve the problems described by these models.

Computers are principal factors making for the acce-
leration of the scientific and technical progress, for the
realization of the complex and purposeful programs of
solution of the most important scientific and technological
problems and for the further increase in the productivity
of labour. The development of computers and computa-
tional mathematics will make it possible, for instance,
to pass from the automatization of the control of techno-
logical systems and processes to the automatization of
the control of production processes.



Chapter 1

Elementary Theory of Errors

1.1. Exact and Approximate Numbers. Sources and
Classification of Errors

In the process of solving a problem, we have to deal
with various numbers which may be exact or approxi-
mate. Exact numbers give a true value of a number and
approximate numbers give a value close to the true one,
the degree of closeness being dependent on the error of
calculation.

For example, in the assertions “a cube has six faces”.
“we have five fingers to a hand”, “there are 32 students in
a class”, “there are 582 pages in a book” the numbers
6, 5, 32 and 582 are exact ones. In the assertions “the
house is 14.25 m wide”, “the radius of the Earth is
6000 km”, “the mass of a match box is ten g” the numbers
14.25, 6000 and 10 are approximate.

This is due, first of all, to the imperfection of measuring
instruments we use. There are no absolutely exact mea-
suring instruments, each of them has its own accuracy,
i.e. admits of a certain error of measurements. In addition,
in the second example the approximation of a num-
ber is in the very concept of the radius of the Earth. The
matter is that, strictly speaking, the Earth is not a sphere
and we can speak of its radius only in approximate terms.
In the next example, the approximation of the number is
also defined by the fact that different boxes may have
different masses and the number 10 defines the mass of a
certain box.

In other cases, the same number may be exact as well
as approximate. Thus, for instance, the number 3 is exact
if we speak of the number of sides of a triangle and approx-
imate if we use it instead of the number m when calculat-
ing the area of a circle using the formula S = nR2.

In practical calculations, we understand the approzxi-
mate number a to be a number which differs but slightly
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from the exact number A and can be substituted for it
in calculations.

The solution of the majority of practical problems
with a certain degree of conventionality can be represent-
ed astwo successive stages: (1) the mathematical descrip-
tion of the problem on hand, (2) the solution of the for-
mulated mathematical problem.

At the first stage, we may encounter two characteristic
sources of errors. First, the fact that the processes hap-
pening in reality can not always be described by means
of mathematics and the simplifications we introduce make
it possible to obtain onlymore or less idealized models.
Second, the initial parameters are, as arule, inexact since
they are obtained from an experiment which gives only
an approximate result.

Accordingly, the total error of a mathematical model
and initial data is considered to be the error of the initial
informatiorn. Having in mind that this error is independent
of the second stage of solving the problem, we often call
it a nonremovable error.

It is, as a rule, unrealizable in practice to obtain an
exact solution of a mathematical problem (the second
stage) irrespective of whether it is constructed analytically
or on a computer. Thus, for instance, we can obtain an
exact solution for only a very restricted class of differen-
tial equations. Therefore, in practical calculations, we usu-
ally use the methods of approximation of solutions,
numerical first of all.

Such a compulsory replacement of an exact solution
by an approximate one generates an error of the method
or, as it is often called, an error of approximation.

Finally, in the process of problem solving, we round
off the initial data as well as the intermediate and final
results. These errors and the errors arising in the arithme-
tic operations involving approximate numbers affect,
more or less, the result of calculations and form a so-
called rounding error.

In this connection, when we formulate a problem, we
either indicate the accuracy of the solution required, i.e.
specify the maximum error permissible in all calcula-
tions, or only calculate the total error of the result. There-
fore, when dealing with approximate numbers, it is
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necessary to know how to solve the following problems:
(1) to characterize the exactness of approximate num-
bers by mathematical means,
(2) to estimate the degree of accuracy of the result
when we know the degree of accuracy of the initial data,
(3) to choose initial data with the degree of accuracy
which will ensure the specified accuracy of the result,
(4) to construct an optimal computing process in order
to obviate the calculations which do not affect the valid
digits of the result.

1.2. Decimal Notation and Rounding off Numbers

Every decimal positive number a can be represented as
a finite or infinite decimal fraction

a = oy A0™ 4 oy 0™ L L. o, H0™H L (1)

where a; are the digits constituting the number (i = 1,
2, ..., n,...) with a; 540, and m is the top digit in
the number a.

Example 1. Represent the number 1905.0778 in form (1):

1905.0778 = 1.10% + 9-102 4 0-10 + 5.10° 4- 0.10-
+ 7-140-2 + 7.10-8 - 8.10-4.

Every unit in the corresponding ith decimal position,
reckoning from left to right, has its value 10™-**! known
as the value of the decimal position. Thus the value of the
first (from the left) decimal position is 10™, that of the
second is 10™-! and so on.

In the example considered, the value of the decimal position
containing the digit 9 is 103-2*1 = 100, of that containing the digit
His 1034+ = 1, of that containing the digit 8 is 103-8+1 = 0.0001

In practical calculations we often have to round off a
number, i.e. to replace it by another number consisting
of a smaller number of digits. In that case we retain one
or several digits, reckoning from left to right, and discard
all the others.

The following rules of rounding off are most often used.

1°. If the discarded digits constitute a number which is
larger than half the unit in the last decimal place that re-
mains, then the last digit that is left is strengthened (in~
creased by unity).



