Jean Longhurst / Audrey Longhurst

COBOL

Jean Longhurst

Harper College, Palatine, IL

Audrey Longhurst

Motorola, Inc.

PRENTICE HALL Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data
LONGHURST, JEAN.

COBOL.

Includes index.

1. COBOL (Computer program language) [. Longhurst,
Audrey. II. Title.

QA76.73.C25L66 1988 005.13'3 87-35683
ISBN 0-13-139387-1

Editorial/production supervision: Allison DeFren and Arthur Maisel
Interior design: Jayne Conte and Maureen Eide

Cover design: Maureen Eide

Manufacturing buyers: Barbara Kittle and Lorraine Fumoso

Page layout: Karen Noferi

= © 1989 by Prentice-Hall, Inc.
= A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 76 5 4 3 2 1

ISBN 0-13-139387-1 0l

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericano, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

Three of the most troublesome topics for beginning COBOL students are programming
logic, debugging, and tables. This text attempts to deal more fully with these topics.

The text is built around one business system, an order system. Our objective
is to allow the student to become so familiar with the files used they can concentrate
on the COBOL instead of a variety of record descriptions. Using a variety of program
design tools, the system builds from simple listings through extracts, control breaks,
table handling, edits, updates, and sorts.

Debugging is emphasized from diagnostics to data exceptions. For the more
common diagnostics a list of items the student should check is provided. For data
exceptions and usage emphasis on IBM storage types is used. The use of trace
and display are encouraged for solving logic problems.

There never seems to be enough material in a text about tables to satisfy a
beginning student. We have tried to include more information about structure,
loading, accessing, and printing tables with the hope the student will be able to
find an example that fits the current problem they are trying to program.

Material on the 1985 standard is included as the associated topic is covered.
It is, however, differentiated so it can be used or not based on its availability.

We wish to thank the following, who reviewed the manuscript of this book:
Gail L. Kroepel, DeVry Institute of Technology (Chicago); J. Patrick Fenton, West
Valley College (Saratoga, California); Henry J. Walker, State University of New
York at Farmingdale; Rose M. Laird, Northern Virginia Community College (An-
nandale); Barbara Harris, DeVry Institute of Technology (Chicago); Ron Teemley,
DeVry Institute of Technology (Irving, Texas); Beverly Bilshausen, College of
DuPage (Glen Ellyn, Illinois); Lou R. Goodman, University of Wisconsin-Madison;
and E. Gladys Norman, Linn-Benton Community College (Albany, Oregon). We
also want to thank members of the staff at Prentice Hall: Dennis Hogan, editor;
Jayne Conte and Maureen Eide, designers; and Allison DeFren and Arthur Maisel,
production editors.

Jean Longhurst
Audrey Longhurst

Note: COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC®
I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications
in programming manuals or similar publications.

IBM is a registered trademark of International Business Machines, Inc.

Preface

BRIEF CONTENTS

55-{@.

e |

Introduction to Programmimg in COBOL
The Identification, Environment, and Data Divisions
The Procedure Division

Extraction

Control Breaks, |

Control Breaks, Il

Table Handling, |

Table Handling, |l

Maintenance of Sequential Files

Sorting

Appendix A: Reserved Words

Appendix B: COBOL Formats

Contents

CHAPTER

CHAPTER

Preface xv

Introduction to Programming in COBOL 1

INTRODUCTION TO COBOL 1
The History of COBOL
Characteristics of COBOL
PROGRAM DEVELOPMENT 2
The Development Process
Analysis Design Coding Testing
Analysis Tools and Techniques
Program Specifications Input/Output Layouts System Flowcharts
Structured Programming
Design Tools
Flowcharts Pseudocode Hierarchy Chart
DATA ORGANIZATION 14
File Structure
Characters Field Record File
Access Methods
Sequential Access Nonsequential Access Database
Storage Media
Disk Storage Tape Storage Paper Cards
Physical Organization
Label Records Blocking
File Description Techniques
Input/Output Record Layouts Printer Layout
COBOL TOPICS 19
The Compilation Process
Overview of COBOL
The Four Divisions COBOL Elements COBOL Coding Forms
SUMMARY 21
EXERCISES 22

The Identification, Environment,
and Data Divisions 23

INTRODUCTION 23
PROGRAM SPECIFICATION: LISTING 23
THE COBOL PROGRAM (FIRST THREE DIVISIONS) 24
IDENTIFICATION DIVISION 25
PROGRAM-ID
AUTHOR

INSTALLATION
DATE-WRITTEN
DATE-COMPILED
SECURITY
Comment Lines
ENVIRONMENT DIVISION 32
CONFIGURATION SECTION
INPUT-OUTPUT SECTION
DATA DIVISION 33
FILE SECTION
File-Description Entry LABEL RECORDS Clause RECORD CONTAINS
Clause DATA RECORDS Clause Record-Description Entry Level
Numbers Data-Names PICTURE Clause Data Formats
WORKING-STORAGE SECTION
VALUE Clause
DEBUGGING 47
Spaces and Hyphens
SUMMARY 49
EXERCISES 51
PROJECTS 53

= i';i)

CHAPTER .2 The Procedure Division 59

PROGRAM SPECIFICATION: LISTING 59
LOGIC FOR SIMPLE LISTING 59
THE COBOL PROGRAM 69
PROCEDURE DIVISION 72
Organization
Notation
COBOL Verbs
The PERFORM Statement The OPEN Statement The READ Statement
The MOVE Statement The WRITE Statement The CLOSE Statement
The STOP Statement The GO TO Statement
DEBUGGING 91
Diagnostics
SUMMARY 93
EXERCISES 95
PROJECTS 98

A

CHAPTER “I* Extraction 104

PROGRAM SPECIFICATION: EXTRACT 104
LOGIC FOR EXTRACT PROGRAM 104
THE COBOL PROGRAM 117
NEW COBOL ELEMENTS 121
New WORKING-STORAGE Fields
Output Editing: Supression of Zeros
IF/ELSE
Decision Structures
The COMPUTE Statement
Arithmetic Expressions Arithmetic Operators Priority of Operations
The ADD Statement
The SUBTRACT Statement
The MULTIPLY Statement
The DIVIDE Statement
CURRENT-DATE

Contents

CHAPTER ..

CHAPTER

PROGRAM SPECIFICATION; LEAD-TIME 143
LOGIC FOR EXTRACT WITH CALCULATIONS 143
THE COBOL PROGRAM 150
NEW COBOL ELEMENTS 154
AND/OR Logic
DEBUGGING 154
Diagnostics
EBCDIC
USAGE IS DISPLAY
SUMMARY 158
EXERCISES 160
PROJECTS 163

Control Breaks, | 172

PROGRAM SPECIFICATION: BREAK-1 172
LOGIC FOR SINGLE-LEVEL BREAK AND FINAL TOTALS 172
THE COBOL PROGRAM 181
NEW COBOL ELEMENTS 186
Signed data
SIGN condition
Output Editing
Simple Insertion Special Insertion Fixed Insertion Floating Insertion
Suppression of Zeros and Replacement with Asterisks
BLANK WHEN ZERO
JUSTIFIED RIGHT
PROGRAM SPECIFICATION: BREAK-2 191
LOGIC FOR SINGLE-LEVEL BREAK WITH TOTALS 192
THE COBOL PROGRAM 202
NEW COBOL ELEMENTS 202
Condition-Names
DEBUGGING 209
Packed Data
TRACE
DISPLAY
SUMMARY 214
EXERCISES 216
PROJECTS 217

Control Breaks, Il 224

PROGRAM SPECIFICATION: BREAK-3 224
LOGIC FOR MULTIPLE-LEVEL BREAKS WITH TOTALS, 2924
THE COBOL PROGRAM 235
PROGRAM SPECIFICATION: BREAK-4 235
LOGIC FOR EXTRACT WITH MULTIPLE-LEVEL BREAKS
AND TOTALS 242
THE COBOL PROGRAM 25
NEW COBOL ELEMENTS 256
REDEFINES
DATA RECORDS ARE
DISPLAY
ACCEPT
Qualification
CORRESPONDING
SIZE ERROR
GO TO/DEPENDING ON

Contents

CHAPTER

CHAPTER

CHAPTER

DEBUGGING 262
Data Exceptions
SUMMARY 264
EXERCISES 265
PROJECTS 268

Table Handling, | 275

PROGRAM SPECIFICATION: TABLE-1 275
LOGIC FOR TABLE STORAGE OF TOTALS 279
THE COBOL PROGRAM 279
NEW COBOL ELEMENTS 295
Table Structure: OCCURS
One-Dimensional Tables Two-Dimensional Tables Three-Dimensional
Tables Accessing Table Data Subscript Range
Overview of Table Handling
Loading Tables Accessing Tables Loading an Execution-Time Table
Writing Out a Table
PERFORM ... VARYING Writing a One-Dimensional Table
Writing a Two-Dimensional Table Writing a Three-Dimensional Table
DEBUGGING 321
Diagnostics
USAGE IS COMPUTATIONAL
Positive Numbers Negative Numbers
SUMMARY 323
EXERCISES 324
PROJECTS 327

Table Handling, Il 334

PROGRAM SPECIFICATION: EDIT 334
LOGIC FOR INPUT-EDIT USING TABLES 336
THE COBOL PROGRAM 351
NEW COBOL ELEMENTS 358
Input Editing
Class Range Reasonableness Existence Consistency
Indexing
The SET Statement
Loading Tables
Compile-Time Tables Preprocess Tables
Searching Tables
Serial Search Binary Search Programmer-Written Searches
DEBUGGING 373
Diagnostics
Testing Considerations
Test Data
SUMMARY 374
EXERCISES 376
PROJECTS 377

Maintenance of Sequential Files 387

INTRODUCTION 387

PROGRAM SPECIFICATION: SHIPMENT 387

LOGIC FOR SEQUENTIAL-FILE MAINTENANCE WITH CHANGES
ONLY 389

Contents

THE COBOL PROGRAM 406

PROGRAM SPECIFICATION: ORDER-MAINT 412

LOGIC FOR SEQUENTIAL-FILE MAINTENANCE WITH ADDS, CHANGES,
AND DELETES 414

THE COBOL PROGRAM 440

SUMMARY 448

EXERCISES 448

PROJECTS 449

CHAPTER '/ Sorting 460

SORTS 460
COBOL SORT 462
Sort Files
Sort Keys
File Handling Procedures
INPUT PROCEDURE USING OUTPUT PROCEDURE GIVING
Combinations
SAMPLE PROGRAM 1: INPUT PROCEDURE/OUTPUT
PROCEDURE 467
PROGRAM SPECIFICATION: SORT-1 468
LOGIC FOR INPUT PROCEDURE/OUTPUT PROCEDURE SORT 470
THE COBOL PROGRAM 476
SAMPLE PROGRAM 2: USING/GIVING 476
LOGIC FOR USING/GIVING SORT 481
PROGRAM SPECIFICATION: SORT-2 481
THE COBOL PROGRAM 482
SAMPLE PROGRAM 3: INPUT PROCEDURE/GIVING 485
PROGRAM SPECIFICATION: SORT-3 485
LOGIC FOR INPUT PROCEDURE/GIVING SORT 486
THE COBOL PROGRAM 487
SAMPLE PROGRAM 4: USING/OUTPUT PROCEDURE 493
PROGRAM SPECIFICATION: SORT-4 493
LOGIC FOR USING/OUTPUT PROCEDURE SORT 494
THE COBOL PROGRAM 497
DEBUGGING 508
Diagnostics
EXHIBIT
SUMMARY 509
EXERCISES 510
PROJECTS 512

Appendix A: Reserved Words 519
Appendix B: COBOL Formats 521

Index 531

Contents

Introduction to
Programming
in COBOL

This chapter presents introductory material which is necessary to begin
learning the COBOL programming language. It includes an introduction to
COBOL, program development, data organization, and COBOL topics.

The introduction to COBOL covers the history and characteristics of
COBOL.

Program development is the process by which programs are created.
Coverage of program development includes the development process,
analysis tools and techniques, structured programming, and design tools.

Data organization involves the storage of data on files, including a
description of the files, access methods, storage media, physical
considerations, and file description techniques.

Included among COBOL topics are basic information about COBOL,
the compilation process, and an overview of the COBOL language.

The development of COBOL began in 1959 with the creation of the Conference
on Data System Languages (CODASYL). CODASYL was created because of a
need for a common programming language for use in business applications.
CODASYL’s objective was to create a language which would not be the property
of any particular computer manufacturer, yet could be adopted by a wide range
of manufacturers. In 1960 CODASYL published a document which described its
newly developed language, COBOL. (COBOL is an acronym for Common Business
Oriented Language.)

In 1968 the first standard version of COBOL was approved (USA Standard
COBOL 1968). The 1968 standard was revised and updated, and in 1974 a new
standard was approved (American National Standard COBOL 1974). In 1985 there
was another revision, and a new standard was approved (American National Standard
COBOL 1985). It is this revision process which keeps the COBOL language current.

COBOL is an English-like programming language. It uses English words and
relatively few symbols. Because of this, it is a very readable language. To an extent,
nonprogrammers can read and understand a COBOL program. This also allows a
COBOL program to be self-documenting. It is usually a simple matter to determine
the function of a COBOL program from an examination of the program itself.
Therefore, a COBOL program requires little additional documentation.

COBOL is a business-oriented language and has extensive data and file-
handling capabilities. COBOL’s ability to manipulate data makes it a good language
for dealing with the vast amounts of data which businesses process. COBOL'’s
ability to handle numbers is not as strong. Where extensive and complex calculations
are required, as in scientific applications, there are other languages which are
better suited to the task.

PROGRAM DEVELOPMENT

The Development In creating a computer program, the development process is the same regardless

Process

of which programming language is used. The development process may be divided
into the phases of (1) analysis, (2) design, (3) coding, and (4) testing. Depending
on the size and complexity of the programming project, a different person (or
group of people) might be responsible for each of the phases, or one person might
complete the entire process alone.

Analysis

The development process begins with a problem to be solved. The analyst meets
with the people who have requested a computerized solution to their problem to
determine their requirements. He or she then analyzes the current existing and
computerized systems that relate to the problem. With this information, the analyst
determines the input, output, and processing requirements for the program. In
general, the analyst will produce documents which describe these requirements.
These documents usually include program specifications, input layouts, output
layouts, and system flowcharts. These documents are described later in this chapter.

Design

The designer begins with the information gathered during the analysis phase and
develops the logic which will be used to solve the problem. The processing re-
quirements are divided into smaller and smaller pieces until the logical flow is
described for the entire program.

Several design tools are available which are useful for describing program
logic. These tools include flowcharts, pseudocode, Warnier-Orr diagrams, Nassi-
Schneiderman charts, Chapin charts, hierarchy charts, and IPO diagrams. The
tool used for design may be mandated by the institution; if not, it will depend
upon the preferences of the designer.

Coding

Coding is the process of translating the logic design into programming language
code. Each step of the logic must be converted into code which conforms to the
rules of the language. In many programming languages, including COBOL, each
piece of data used by the program must also be described. If the logic design is
complete and comprehensive, coding will consist only of translating the design to
fit the syntax of the programming language.

Testing

After a program is coded, it must be tested in order to discover and correct any
errors that might have occurred during the analysis, design, and coding phases.
Testing involves converting the program into machine language. In COBOL, a
commercially available program (a COBOL compiler) is used to convert the program
into machine language. A computer cannot run a program unless it is in machine
language. Two types of errors may be uncovered during testing: syntax errors and
errors causing incorrect output.

Syntax Errors

Syntax errors occur when the program code violates a rule of the programming
language. A syntax error might be caused by a typographical error, a misspelling,
or a misunderstanding of the rules of the language. For example, a syntax error
would occur if the word MVOE were used instead of the word MOVE. It may not
be possible to run a program that has syntax errors.

Introduction to Programming in COBOL

Errors Causing Incorrect Output

Once syntax errors have been removed from the program, the program is
executed to determine whether it produces correct output. Test data must be
carefully prepared to assure thorough testing of the program. All possible combinations
of data, correct and incorrect, should be tested, and the output must be carefully
examined to locate any errors which might be present. If the output is incorrect,
the program is debugged. Debugging is the process of locating and removing
program errors. Incorrect output may be caused by coding errors or by errors in
the logic of the program.

Analysis begins when a user group (such as the accounting or marketing department)
approaches the data processing department and asks for assistance in obtaining
information necessary to solve a business problem. The analyst then meets with
the user group to determine its requirements and analyzes the systems (both
manual and computerized) the group is currently working with. Then the analyst
explores the options available to solve the problem and determines which option
should be used. The analyst will usually put this solution into writing using program
specifications, input/output layouts, and system flowcharts.

A program specification is a document which is produced during the analysis phase.
It describes the requirements of the program to be written and is used as the basis
for designing, coding, and testing the program.

The contents of a program specification will vary greatly from installation to
installation. Usually, a program specification will include the program name, program
function, input and output file descriptions, processing requirements, and output
requirements. For example, the order processing department might approach the
data processing department with a request for a printed report which will list all
orders. The analyst then determines the requirements for the report, determines
that the needed data is available on an existing file, and produces the program
specification shown in Figure 1-1.

The program specification consists of the following elements:

Program Name The program is given a name by which it will be recognized
by the computer system. The program name is usually created using a set of
naming standards which are in place at the installation.

Program Function The function and purpose of the program are described, in
order to give an overview of the program.

File Descriptions Often, a program must use or create data which exists outside
of the program. This data is stored in files. (Files are discussed in greater detail
later in the chapter.) Each file which will be used in the program is described in
the file description section. The description provides basic information about the
file, including the name of the file and whether the file is used as input to the
program or as output from the program.

Processing Requirements There are no processing requirements in the example
of Figure 1-1. When included, however, processing requirements provide an overview
of the logic needed in the program, including whatever manipulation of the data
and mathematical formulas are necessary.

Output Requirements The content and format required for the output are
described.

Program Development

PROGRAM SPECIFICATION

ogram Name: LISTING

Program Function:

The program will produce a printed listing of all orders from the ORDER FILE.

1 <1 1+ Eil

Input Files

I. ORDER-FILE

INPUT DEVICE: DISK
FILE ORGANIZATION: SEQUENTIAL
RECORD LENGTH: 70 BYTES
FILE SEQUENCE.: ASCENDING ON BRANCH /
SALES REP
Output Files

[. PRINT-FILE

OUTPUT DEVICE: PRINTER
RECORD LENGTH: 133 BYTES

Output Requirements

Each record read from the order file should be printed on one line of the output
report. All fields from the input record are to be included on the output.
The following are formatting requirements for the report:

1. The first page of the report should contain:
(a) a main heading which includes the company name and report name.
(b) column headings which describe the items which are printed underneath.
2. The detail lines should include all fields from the input.
3. The detail lines should be double spaced.
4. Do not include provisions for page overflow.

e e e e e e e e e e e

Input and output layouts are usually included with the program specification. They
describe the data items which are or will be stored on the files. Layouts for the
ORDER-FILE and PRINT-FILE of Figure 1-1 are shown in Figures 1-2 and
1-3. Input/output layouts are discussed in greater detail later in the chapter.

& & « z 3
T s s « -4 wow -4 = ,:g . S, (=]
Se S8 © 8 @Bz gk | .2 £ | 22 | 92% | BEk 9
245 bB= » = 03 oo = < Sa %o <»no 2
£34 32 322 |582 £2 3 5
S el R YYMMDD ‘ YYMMDD|YYMM DD S
| 111 | ppedrrrentrrrvebereervereervrervererere b PP il iii il (..
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

System Flowcharts

A system flowchart describing the flow of data through the system may be included
with the program specification. Each symbol on the flowchart represents a file or

4 Introduction to Programming in COBOL

s}

ACITIUAIL

9/9]-1919,-19/9

9/9]-1919/-19/9

SH|I|P] DATIE

919/-19/91-19/9

9/9/-1919-19/9

R|EQUIEIS|TIEID
SH|IP| DATTIE

UIN T[T

PR|I|CIE

919/9/9].19/9

9/9/919.19/9

9/9/9/9/9
919191919

ORDIER|S

QUUAIN[T]IT]Y

ClURRIEN

PAR[T

NJUMBIER

XIXIXX XX

XIXIX XXX

IIN[C|.

|

|

ORDIER
DATIE

9/9]-19/9/-19!9

9(9]-919]-19]9

SIAILIEIS
ORDIER

XIXIX XXX

XIXIX XXX

PIRIOIDU(CIT| [D[1|S|TR]IBIUIT{I 0N

ORDIER

PIURICHIAISIE

XIXXIXIX XX

XIXIX XXX XX

ERR

N[UMBIER

19]99/9/9

9/9/91919

ClUS|T

EP

919

R

999

SIALIE|S

99

919

BIRIAINICH

1]2/314/5/6/78/9

4

10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43

45
46
47
48
49
50

a program. Flowlines and arrows are used to show the relationships between the
files and the programs. The following symbols are used in system flowcharting.

-

Process Symbol

This symbol indicates an entire program. In a system flowchart, the name
of the program is written inside the box.

—
[[
L J

-

Magnetic Disk Symbol

This symbol is used to indicate a file which is or will be stored on magnetic
disk. The name of the file is written inside the symbol.

\ /

Nl

Magnetic Tape Symbol

This symbol is used to indicate a file which is or will be stored on magnetic
tape. The name of the file is written inside the symbol.

B

l
Ll

Document Symbol

This symbol indicates an output file which is a document (i.e., a printed
report) or an input function where the input is obtained from a source document.
The name of the document is written inside the symbol.

l —
Flowlines

Flowlines are used to connect the symbols used in a system flowchart. The
arrowhead indicates the direction of data flow.

Figure 1-4 shows the system flowchart for the LISTING program of Figure
1-1. A process symbol is used to represent the program. The program name,
LISTING, is written inside this symbol. Flowlines are used to connect the input
and output files to the program. The input file is stored on magnetic disk and is
called the ORDER FILE. The document symbol is used for the output and indicates
that the output is in printed form. The output file is called the CURRENT ORDER
REPORT.

Introduction to Programming in COBOL

