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W Preface

This second edition differs
from the first in that some of the chapters have been modified so
that they better meet the needs and backgrounds of students who
are deficient in trigonometry. In addition, most of the exercise sets
have been changed.

Chapter One contains prerequisites for trigonometry—the real
number system, functions, and graphs. As an aid to reviewing
this material, more numerical problems than appeared in the first
edition have been included. The concept of relation is defined, but
is used primarily to introduce graphs of equations.

Chapters Two, Three and Four have the same format as in the
previous edition; however, explanations of concepts which cause
the most difficulty have been expanded and improved. Trigono-
metric functions of real numbers are introduced by means of the
unit circle, and the more classical descriptions in terms of ratios are
brought in shortly afterward. By blending these two approaches,
instead of concentrating on one of them, the student should acquire
a deeper understanding of this important class of functions.

The standard methods for solving oblique triangles are con-
tained in Chapter Five. In Chapter Six, the ordered pair definition
of complex numbers has been replaced by a definition involving
the symbol a 4 bi. Many instructors favor this procedure and
most students find it easier to understand. Of course, the only
essential difference in the two definitions is the notation, provided
one does not, at the outset, interpret the plus sign in a + b7 as
addition.



Vi

Preface

Each section contains an ample supply of graded exercises.
Exercise sets are designed so that by working either the odd-num-
bered or the even-numbered exercises, practice on all parts of the
theory is obtained. There is a review section at the end of each
chapter consisting of a list of important topics together with perti-
nent exercises. Answers to the odd-numbered exercises appear at
the end of the text. An answer booklet is available for the even-
numbered exercises.

This edition has benefited from comments and suggestions of
users of the first edition. To these, and to all the people who have
assisted in the formation of this text, I wish to express my sincere
appreciation.

Earl W. Swokowski
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\/\ chapter one  Basic Concepts

In this chapter we discuss
some important concepts which are prerequisites for the
study of trigonometry. These include the terminology
of sets, the real number system, graphs, and functions.

Sets

Throughout mathematics and other areas the concept of sef is used
extensively. This notion is so basic that we consider the word ‘‘set’” a
primitive term and do not attempt to define it formally. Intuitively,
we think of a set as a collection of objects of some type. Thus one
might speak of the set of books in a library, the set of giraffes in a zoo,
the set of natural numbers 1, 2, 3, - - -, the set of points in a plane,
and so on. The objects in a given set are called the elements of the set.
We assume that every set is well defined in the sense that there is some
rule or property that can be used to determine whether a given object is
or is not an element of the set.

Notationally, capital letters, A, B, C, R, S, - - - will be used to
denote sets, whereas lower-case letters a, b, x, y, - - - will represent ele-
ments of sets. If S is a set, then the symbol a & S denotes the fact
that a is an element of S. Similarly, a, b € S means that ¢ and b are
elements of S. The notation a & S signifies that @ is not an element
of S.

If every element of a set S is also an element of a set 7', then S is
called a subset of T and we write S € T, or T D S, which may be read
“S is contained in 7" or “T contains S.” For example, if 7' is the set
of letters in the English alphabet and if S is the set of vowels, then S C 7.
It is important to note that for every set S we have S C S, since every
element of S is an element of S. The symbol S &€ 7' means that S is

1



9 Chap. 1 Basic Concepts

not a subset of 7. 1In this case there is at least one element of .S which
is not an element of 7'.

We say that two sets S and 7' are equal, and write S = T, provided S
and 7 contain precisely the same elements. This is equivalent to saying
that S € T and also T € S. If S and 7T are not equal, then we write
S=T. If SCT and S = T, then S is called a proper subset of 7.
In this case there exists at least one element of 7" which is not an element
of S.

The notation a = b, translated “a equals b,”” means that @ and b are
symbols which represent the same element. For example, in arithmetic
the symbol 2 + 3 represents the same number as the symbol 4 + 1 and
hence we write 2 + 3 = 4 4+ 1. Similarly, ¢ = b = ¢ means that a, b,
and c all represent the same element. Of course, a % b means that a
and b represent different elements. We assume that equality of elements
of a set S satisfies the following three properties: (i) a = a foralla € S,
(ii) if @ = b, then b = a, and (iii) if a = band b = ¢, thena = c.

There are various ways of describing sets. One method, especially
adapted for sets containing only a few elements, is to list all the elements
within braces. For example, if S consists of the first five letters of the
alphabet, we write S = {a, b, ¢, d, e}. When sets are given in this way,
the order used in listing the elements is considered irrelevant. We could
also write S = {a, ¢, b, ¢, d}, or S = {d, ¢, b, ¢, a}, and so on. This
notation is also useful for describing larger sets when there is some defi-
nite pattern for the elements. As an illustration, we might specify the
set N of natural numbers by writing

N = {172;314; T '}7

where the dots may be read ‘“‘and so on.”

There is another convenient method for describing sets. If S con-
sists of a set of elements from some set 7, each of which has a certain
property, denoted by p, then we write

S = {x € T | x has property p}

or, if the set 7' from which the elements are chosen is clear, then we
merely write

S = {z | z has property p}.

To translate this notation, for the braces read “the set of”’ and for the ver-
tical bar read “such that.” As a specific example, let S = {# € N |z +
2 = 7}. This can be read “S is the set of elements z in N such that
x4+ 2 =17." Hence S contains only one element, the number 5. As
another illustration, if £ = { € N |z is even}, then E consists of the
collection of all even natural numbers, that is, E = {2, 4, 6, 8, - - -}.
Another way of describing E is to write £ = {2n |n & N}. The set F
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3 Sec. 1 Sets

of odd natural numbers can be denoted by F = {2n — 1 |n & N}. For
example, by substituting the natural numbers 1, 2, 3, 4 for n, we obtain
the elements 1, 3, 5, 7 of F.

One must distinguish between an element a of a set and the set con-
sisting of the element a. Thus if S = {a, b, ¢}, then a & S but not
{a} € S. On the other hand, if we wish to discuss the subset of S con-
sisting of the element a, we use the notation {a} and write {a} C S.

The empty set & is sometimes defined by & = {x |z = z}. The
set & differs from all other sets because it contains no elements. It is
mainly a notational device we find convenient to use in certain instances.
For example, if S = {t E N |z + 2 = 1}, then S = &, since = + 2 is
never 1 when x & N. It is customary to assume that & is a subset of
every set S.

Let us list the subsets of the set S = {a, b, ¢}. There are 8 subsets
in all. They are {a}, {b}, {c}, {a, ¢}, {a, b}, {b, ¢}, {a, b, c}, and &.
In Exercise 4 the student is asked to list the 16 subsets of a set which
contains 4 elements.

When working with several sets, we assume that they are subsets of
some larger set U, called a universal set. However, U will not always be
given explicitly. If elements x, y, 2, - - - are employed, without specify-
ing any particular set, we assume they belong to some universal set U.
With these remarks in mind, we state the following two definitions.

Definition of Union
The union of two sets A and B, denoted by A4 \U B, is the set

{r|z &€ 4 orx € B}.

The word “or” in this definition and generally throughout mathe-
matics means that either x € A or x € B, or possibly that x is in both
A and B.

Definition of Intersection
The intersection of two sets A and B, denoted by A M B, is the set
{x|2z E A and z € B}.

Thus the intersection of two sets consists of the elements which are
common to the sets. If A M B = &, thatis, if A and B have no elements
in common, then A and B are said to be disjoint.

Example. If A = {a, b, ¢, d}, B = {b, ¢, ¢, f} and C = {a, d}, find
AUB ANB AUC, ANC,and BN C.

Solution: By (1.1) and (1.2) we have A \UB = {a, b, ¢, d, ¢, f},
ANB=1{bc},AJC =4, ANC=C,andBNC = .

Sometimes sets are pictured by drawing circles, squares, or other
simple closed curves in a plane, where it is understood that the points
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within these figures represent the elements of the sets. Thus if 4 and B
are subsets of a set U, we might indicate this as in Fig. 1.1. Unions and

U
intersections can then be represented by shading appropriate parts of
the figure. This is illustrated in Fig. 1.2, where we have deleted from

Figure 1.1

A B

ANB
Figure 1.2

our picture the universal set U. The reader should also sketch A \U B
and A N\ B when A C B, BC A,or AN B = . It is important to
realize that diagrams such as these are used merely to help motivate and
visualize notions concerning sets and are not used to prove or serve as
steps in proofs of any theorems.

Unions and intersections of more than two sets can also be consid-
ered. Forexample, if A, B, and C are sets, we may consider the union of
AUBand €. Thus ( AUB)UC = {z|a2€E AU Bora & (}, that
is, (4 U B) U C is the set of all elements « which appear in at least one
of the sets A, B, or C. On the other hand, first forming B \U C, we could
consider A U (BU (). Evidently (A UB)UC =A4U (BUC). Sim-
ilarly, one can show that (A N B) N\ C = AN (BN QO).

Exercises

1 Use the notation of sets to designate each of the following:
(a) The set consisting of the last six letters of the alphabet.
(b) The set consisting of the letters of the alphabet which occur
after the letter z.
(¢) The natural numbers which are divisible by 10.
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9 Use words to describe each of the following sets, where N is the set
of natural numbers:
(a) S = {xr € N|zisodd}.
(b) T={xEN|z=5}.
(¢) V = {10n|n & N}.
3 If A = {1, 2, 3} determine whether each of the following is true or
false and give reasons for your answers:
(a) 3 €& A. (b) 3C A. (e) {3} C A.
(d AcA. (e) I eEA. ) <A
4 Find 16 different subsets of the set W = {1, 2, 3, 4}.
5 Find AU Band A N B if A and B are as follows:
(a) A4 =125 3}, B={31,6}.
(b) A = {a,b,c d}, B={d e a}.

(c) A = {a’ b7 C}JB = {dY e?f}'

(d) 4= {1;2};B= {ly 2:3}
6 If R ={1,5,6},S = {2,3,4},and T = {6, 2} find:

(a) RNESUT). b)) TN RUYUNS).

(¢) RUBSNT). d RUYUSNRYUT).
7 If A and B are sets, find A N B if:

(a) A CB. (b) B C A.

(¢) A and B are disjoint. (d) A = B.

8 Same as Exercise 7 for A U B.

9 Use overlapping circles in a plane to represent sets R, S, and 7.
Shade the region which represents each of the following:

(a) RUISUT). b)) (RNS)NT. (¢) RUWBSNT).
d RNBSUYT). ) (RNS)JURNT).
10 Prove thatif A and B are sets, then A \U B = Bif andonly if A C B.

Real Numbers

The set used most frequently in mathematics is the set R of real numbers.
We refer to R, together with the various properties possessed by its ele-
ments, as the real number system. The reader is undoubtedly well
acquainted with symbols such as 2, —2, /3,0, —8.614, .3333 - - - , etc.
which are used to denote elements of R.  In this section we shall list some
properties of R and review the notation and terminology associated with
real numbers.

The system R is closed relative to operations of addition (denoted by
“+”’) and multiplication (denoted by ‘-’). Thus, for every a, b € R,
there corresponds a unique element a + b called the sum of a and b and
a unique element a - b (sometimes written ab) called the product of a and
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b. These operations have the following properties, where all lower case
letters denote arbitrary elements of R.

Commutative Laws
a+b=>b+4+a ab=ba.
Associative Laws
a+ (b+c)=(a+b)+c albe) = (ab)e.
Distributive Laws

alb 4+ ¢) = ab + ac, (a+ b)c = ac + be.

Identity Elements
There exist special real numbers, denoted by 0 and 1, with the fol-
lowing properties:

a+0=a=0+a a'l=a=1"a.

Inverse Elements

For every real number a, there is a real number denoted by —a such
that @ + (—a) = 0 = (—a) + a. For every real number a # 0, there
is a real number denoted by 1/a such that a(1/a) = 1 = (1/a)a.

A set which satisfies the above properties is referred to as a field. For this
reason, (1.3)—(1.7) are sometimes called the field properties of the real
number system.

The special real numbers 0 and 1 are referred to as zero and one,
respectively. We call —a the negative (or additive inverse) of a and 1/a
the reciprocal (or multiplicative tnverse) of a. The symbol a=! is often
used in place of 1/a.

Many properties of R can be derived from (1.3)-(1.7). For example,
one can prove the cancellation laws, which state that if a + ¢ = b + ¢,
then @ = b, and if ac = bc, where ¢ # 0, then @ = b. One can also show
thata -0 = 0 = 0 - a for every a € R. Moreover, if ab = 0, then either
a =0o0rb=0. The following rules involving negatives may be estab-
lished: —(—a) =a, (—a)b = —ab = a(—b), (—a)(—b) = ab and
(=1)a = —a.

If a, b € R, then the operation of subtraction (denoted by “—7") is
defined by a — b = a+ (—b). If b 0, then diision (denoted by
“=+") is defined by a = b = a(1/b) = ab-'. The symbol a/b is often
used in place of @ + b, and we refer to it as the quotient of a by b or the



7 Sec. 2 Real Numbers

fraction a over b. The numbers a and b are called the numerator and
denominator, respectively, of the fraction. It is important to note that
a/b is not defined if b = 0, that is, division by zero vs not permissible in R.
The following rules for quotients may be established, where all denomi-
nators are nonzero real numbers:

a/b = ¢/d if and only if ad = be,
(ad)/(bd) = a/b,
(a/b) + (c/d) = (ad + be)/(bd),
(a/b)(c/d) = (ac)/(bd).

If we begin with the real number 1 and successively add it to itself,
we obtain the set N of positive integers (also called the natural numbers):

L,14+1,1+1+1,14+14+141, - -}
As usual, this set is specified by writing
N={1,234, -

The negatives —1, —2, —3, —4, - - - of the positive integers are referred
to as negative integers. The set Z of integers is the totality of positive and
negative integers together with the real number 0, that is,

Z={--,-3-2-1,01,23, -- .

A real number is called a rational number if it can be written in the
form a/b, where a and b are integers and b > 0. Real numbers that are
not rational are called <rrational. The ratio of the circumference of a
circle to its diameter is irrational. This real number, which is denoted
by m is often approximated by the decimal 3.1416 or by the rational
number %2. We use the notation 7= = 3.1416 to indicate that = is
approximately equal to 3.1416.

Real numbers may be represented by infinite decimals. In order to
obtain such a representation for rational numbers, the process of long
division may be used. Thus, by long division, the decimal representation
for the rational number 2434 is found to be 3.2181818 - - - |, where the
three dots indicate that the digits 1 and 8 repeat indefinitely. Such an
expression is referred to as an infinite repeating dectimal. Every rational
number has associated with it an infinite repeating decimal and, con-
versely, given such a decimal it is possible to find a rational number
which has, as its decimal representation, the given infinite repeating
decimal. Decimal representations for irrational numbers may also be
obtained; however, they are always infinite nonrepeating. For numerical



