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INTRODUCTION

Photovoltaics is the process of converting sunlight directly into electricity using solar cells.
Edmond Becquerel made the first photovoltaic device in 1839, working as a young 19 year old in
his father’s laboratory in France. However, the understanding and exploitation of this effect was to
depend on some of the most important scientific and technological breakthroughs of the 20th
century. One is the development of quantum mechanics, one of the major intellectual legacies of
the 20th century. Another, dependent on the first, is the development of semiconductor technology,
which has been responsible for the pervasive electronics revolution and the photonics revolution
now gathering pace. An interesting history of modern photovoltaic developments is given by
Loferski (1993), Perlin (2000) and Green (2005), and the early history, reaching back to 1839, is
described in more technical detail by Crossley et al. (1968).

Fortunately, given its pedigreed background, the simplicity and reliability of use of solar cells is
one of the technology’s great strengths. In the first few chapters of this book, we explore the
properties of the two most important components of this technology—sunlight, which provides the
primary source of energy, and the solar cells themselves, which convert this sunlight by elegant
internal processes into electricity. We then look at the fabrication of cells and modules before
examining a range of photovoltaic systems, from specific purpose applications such as solar cars
through independent power supplies for households or water pumping to large grid-connected
power stations.

This book aims to provide workers in the field with the basic information needed to understand the
principles of photovoltaic system operation, to identify appropriate applications and to undertake
simple photovoltaic system design. It is based on course material used for undergraduate
Photovoltaic and Solar Energy Engineering, Renewable Energy Engineering, and Electrical
Engineering students at the University of New South Wales, and will continue to be used as a
principal text. By increasing the number of graduates who are expert in photovoltaic concepts and
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applications, we aim to provide engineers qualified to participate in and promote the rapid global
growth of the photovoltaics industry.
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Progress in Photovoltaics: Research and Applications, 1, pp. 67-78.

Green, M.A. (2005), ‘Silicon photovoltaic modules: A brief history over the first 50 years’,
Progress in Photovoltaics, 13, pp. 447-455.



Chapter

THE CHARACTERISTICS OF
SUNLIGHT

1.1 PARTICLE-WAVE DUALITY

Our understanding of the nature of light has changed back and forth over the past few centuries
between two apparently conflicting viewpoints. A highly readable account of the evolution of
quantum theory is given in Gribbin (1984). In the late 1600s, Newton’s mechanistic view of light as
being made up of small particles prevailed. By the early 1800s, experiments by both Young and
Fresnel had shown interference effects in light beams, indicating that light was made up of waves.
By the 1860s, Maxwell’s theories of electromagnetic radiation were accepted, and light was
understood to be part of a wide spectrum of electromagnetic waves with different wavelengths. In
1905, Einstein explained the photoelectric effect by proposing that light is made up of discrete
particles or quanta of energy. This complementary nature of light is now well accepted. It is
referred to as the particle-wave duality, and is summarised by the equation

E=hf =hel A (1.1)

where light, of frequency f or wavelength A, comes in ‘packets’ or photons, of energy E, h is
Planck’s constant (6.626 x 107* Js) and ¢ is the velocity of light (3.00 x 10® m/s) (NIST, 2002).

In defining the characteristics of photovoltaic or ‘solar’ cells, light is sometimes treated as waves,
other times as particles or photons.

1.2 BLACKBODY RADIATION

A ‘blackbody’ is an ideal absorber, and emitter, of radiation. As it is heated, it starts to glow; that
is, to emit electromagnetic radiation. A common example is when a metal is heated. The hotter it
gets, the shorter the wavelength of light emitted and an initial red glow gradually turns yellow, then
white.

Classical physics was unable to describe the wavelength distribution of light emitted from such a
heated object. However, in 1900, Max Planck derived a mathematical expression describing this
distribution, although the underlying physics was not fully understood until Einstein’s work on
‘quanta’ five years later. The spectral emissive power of a blackbody is the power emitted per unit
area in the wavelength range 1 to A + d/ and is given by the Planck distribution (Incropera &
DeWitt, 2002),
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27the?
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where & is Boltzmann’s constant and E has dimensions of power per unit area per unit wavelength.
The total emissive power, expressed in power per unit area, may be found by integration of Eqn.
(1.2) over all possible wavelengths from zero to infinity, yielding E = 6T*, where o is the Stefan—
Boltzmann constant (Incropera & DeWitt, 2002).

E(A,T)= (1.2)
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Figure 1.1. Radiation distributions from perfect blackbodies at three different temperatures, as
would be observed at the surface of the blackbodies.

Fig. 1.1 illustrates the radiation distribution for different blackbody temperatures, as would be
observed at the surface of the blackbody. The lowermost curve is that for a body heated to 3000 K,
about the temperature of the tungsten filament in an incandescent lamp. The wavelength of peak
energy emission is about 1 pm, in the infrared. Only a small amount of energy is emitted at visible
wavelengths (0.4-0.8 pm) in this case, which explains why these lamps are so inefficient. Much
higher temperatures, beyond the melting points of most metals, are required to shift the peak
emission to the visible range.

1.3 THE SUN AND ITS RADIATION

The sun is a hot sphere of gas heated by nuclear fusion reactions at its centre (Quaschning, 2003).
Internal temperatures reach a very warm 20 million K. As indicated in Fig. 1.2, the intense
radiation from the interior is absorbed by a layer of hydrogen ions closer to the sun’s surface.
Energy is transferred by convection through this optical barrier and then re-radiated from the outer
surface of the sun, the photosphere. This emits radiation approximating that from a blackbody with
a temperature of nearly 6000 K, as shown in Fig. 1.3.
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Figure 1.2. Regions in the sun’s interior.

25 ¢
E 20¢ 6000 K blackbody
§ AMO radiation
; 15 ¢ AM1.5G radiation
=
5
® 10}
=
3
8 05 |
w
0.0

0.0 0.2 04 0.6 0.8 1.0 1.2 14 16 1.8 20
wavelength (um)

Figure 1.3. The spectral irradiance from a blackbody at 6000 K (at the same apparent diameter as
the sun when viewed from earth); from the sun’s photosphere as observed just outside earth’'s
atmosphere (AMO0); and from the sun’s photosphere after having passed through 1.5 times the
thickness of earth’s atmosphere (AM1.5G).

1.4  SOLAR RADIATION

Although radiation from the sun’s surface is reasonably constant (Gueymard, 2004; Willson &
Hudson, 1988), by the time it reaches the earth’s surface it is highly variable owing to absorption
and scattering in the earth’s atmosphere.

When skies are clear, the maximum radiation strikes the earth’s surface when the sun is directly
overhead, and sunlight has the shortest pathlength through the atmosphere. This pathlength can be
approximated by 1/cos6,, where 6, is the angle between the sun and the point directly overhead
(often referred to as the zenith angle), as shown in Fig. 1.4. This pathlength is usually referred to as
the air mass (AM) through which solar radiation must pass to reach the earth’s surface. Therefore

AM =1/cos 6, (1.3)

This is based on the assumption of a homogeneous, non-refractive atmosphere, which introduces an
error of approximately 10% close to the horizon. Igbal (1983) gives more accurate formulae that
take account of the curved path of light through atmosphere where density varies with depth.
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Figure 1.4. The amount of atmosphere (air mass) through which radiation from the sun must pass
to reach the earth’s surface depends on the sun’s position.

When 6, = 0, the air mass equals 1, or ‘AM1’ radiation is being received; when 6, = 60°, the air
mass equals 2, or ‘AM2’ conditions prevail. AM1.5 (equivalent to a sun angle of 48.2° from
overhead) has become the standard for photovoltaic work.

The air mass (AM) can be estimated at any location using the following formula:
AM =1+ (s/n) (1.4)

where s is the length of the shadow cast by a vertical post of height 4, as shown in Fig. 1.5.

sunlight

<&

- s >

Figure 1.5. Calculation of Air Mass using the shadow of an object of known height.

The spectral distributions of the sun’s irradiance outside the atmosphere (Air Mass Zero or AMO0),
and at AM1.5 are shown in Fig. 1.6. Air Mass Zero is essentially unvarying and its total irradiance,

integrated over the spectrum, is referred to as the solar constant, with a generally accepted value
(ASTM, 2000, 2003; Gueymard, 2004) of

Gge =1.3661kW/m? (1.5)



