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FOREWORD

The Institute for Mathematical Sciences at the National University of Sin-
gapore was established on 1 July 2000 with funding from the Ministry of
Education and the University. Its mission is to provide an international
center of excellence in mathematical research and, in particular, to pro-
mote within Singapore and the region active research in the mathematical
sciences and their applications. It seeks to serve as a focal point for scien-
tists of diverse backgrounds to interact and collaborate in research through
tutorials, workshops, seminars and informal discussions.

The Institute organizes thematic programs of duration ranging from one
to six months. The theme or themes of each program will be in accordance
with the developing trends of the mathematical sciences and the needs and
interests of the local scientific community. Generally, for each program there
will be tutorial lectures on background material followed by workshops at
the research level.

As the tutorial lectures form a core component of a program, the lec-
ture notes are usually made available to the participants for their immediate
benefit during the period of the tutorial. The main objective of the Insti-
tute’s Lecture Notes Series is to bring these lectures to a wider audience.
Occasionally, the Series may also include the proceedings of workshops and
expository lectures organized by the Institute. The World Scientific Pub-
lishing Company and the Singapore University Press have kindly agreed
to publish jointly the Lecture Notes Series. This volume, “Markov Chain
Monte Carlo: Innovations and Applications” is the seventh of this Series.
We hope that through regular publication of lecture notes the Institute will
achieve, in part, its objective of promoting research in the mathematical
sciences and their applications.

July 2005 Louis H. Y. Chen
Denny Leung
Series Editors

vii



PREFACE

The technique of Markov chain Monte Carlo (MCMC) first arose in statisti-
cal physics, marked by the celebrated 1953 paper of Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller. The underlying principle is simple: if one
wishes to sample randomly from a specific probability distribution then
design a Markov chain whose long-time equilibrium is that distribution,
write a computer program to simulate the Markov chain, and run the pro-
grammed chain for a time long enough to be confident that approximate
equilibrium has been attained; finally record the state of the Markov chain
as an approximate draw from equilibrium. The Metropolis et al. paper used
a symmetric Markov chain; later developments included adaptation to the
case of non-symmetric Markov chains.

The technique has developed strongly in the statistical physics commu-
nity but also in separate ways and with rather different emphases in the
computer science community concerned with the study of random algo-
rithms (where the emphasis is on whether the resulting algorithm scales
well with increasing size of the problem), in the spatial statistics commu-
nity (where one is interested in understanding what kinds of patterns arise
from complex stochastic models), and also in the applied statistics commu-
nity (where it is applied largely in Bayesian contexts, enabling researchers
to formulate statistical models which would otherwise be intransigent to
effective statistical analyses).

Within the statistical physics community, the MCMC technique lies
at the heart of the tradition of “simulation physics”: understanding phase
transition and other physical behaviour by constructing careful simulation
experiments on the computer. A particular line of development for the past
10 years in the statistical physics community is that of extended ensemble
methods, beginning with Berg’s work on the multicanonical method, fol-
lowed by simulated tempering, parallel tempering, broad histogram Monte
Carlo, transition matrix Monte Carlo, etc. These methods substantially
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extend the ability to simulate complicated systems that are very difficult
to deal with directly, such as spin-glasses, or protein models.

Within the statistics community, landmark papers include the famous
Geman-Geman 1984 paper on image restoration, work by Gelfand and
Smith in 1990 showing that MCMC can be applied effectively to Bayesian
problems, and Green’s (1995) work on dimension-varying problems. The
resulting impact on applied statistics has been truly revolutionary.

A recent theoretical development is that of perfect stmulation, address-
ing the following central question: how long should one run the Markov
chain so as to ensure that it is close to equilibrium? This rather startling
development is as follows: in favourable cases one can adjust the Markov
chain Monte Carlo algorithm so as to generate exact draws from the target
distribution. It was given practical effect in two different ways in the semi-
nal papers of Propp and Wilson (1996) and of Fill (1998). Subsequent work
has filled out the mathematical picture by clarifying how recent develop-
ments relate to previous work (both the Propp-Wilson and Fill algorithms
relate in interesting ways to each other and to prior theoretical concepts,
while adding their own attractively empirical flavour).

The development of theory also benefits applications: simulation tech-
niques have been applied to develop practical statistical inferences for
almost all problems in (bio)statistics, for example, the problems in longitu-
dinal data analysis, image analysis, genetics, contagious disease epidemics,
random spatial pattern, and financial statistical models such as GARCH
and stochastic volatility. The techniques also constitute a major part of
today’s bioinformatics toolbox.

The expositions which make up this book arose from a desire to bring
together people who work on innovative developments and applications
across the range of statistics, physics, and bioinformatics, to encourage
cross-fertilization and to challenge each other with varied problems. The
Institute of Mathematical Sciences of the National University of Singapore
kindly and generously agreed to fund a month-long programme of activity
in March 2004, which allowed us to invite a number of distinguished lec-
turers from the different fields, to present courses at graduate level; this
resulted in a memorable and most productive month, greatly facilitated by
the kindness and efficiency of the IMS Director, Prof Louis Chen, and his
talented and able staff. The chapters of this book correspond to several of
these courses: in Chapter 1 Bernd Berg introduces Markov chain Monte
Carlo from the perspective of statistical physics, starting from simple ideas
of probability, and developing MCMC ideas right up to multicanonical en-
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sembles, illustrated using FORTRAN computer code available on the web.
Chapter 2 presents a complementary view from David Landau, with par-
ticular emphasis on issues of finite-size effects, the peculiarities of random
number generators, and a spectrum of ingenious techniques to assess phase
transition effects. In a change of pace, Wilfrid Kendall uses Chapter 3 to
describe the various ideas involved in the transformations of algorithms
known collectively as perfect simulation, which in favourable cases deliver
exact draws in random rather than deterministic runtimes. A very different
theme is treated by Rong Chen in Chapter 4: simulation algorithms that
process information sequentially (known as Sequential Monte Carlo), either
because this is natural to the algorithm itself, or because it is useful to de-
compose the problem in such a manner. Finally, in Chapter 5, Elizabeth
Thompson presents a careful study of how MCMC is put into practice in
the analysis of pedigrees in genetics.

It is our hope as editors that this ensemble of expositions, and the
diversity of ideas contained therein, will form an attractive invitation to
readers, to introduce them to the fascinating and various worlds of Markov
chain Monte Carlo in mathematical science. We trust you will enjoy this
book as much as we enjoyed the task of its compilation!

W. S. Kendall
F. Liang
J.-S. Wang



GLOSSARY

Contributors to this volume come from several different fields, each with
their own preferred terminology, which can often overlap. To aid the reader,
we have therefore assembled the following glossary of terms and brief defi-
nitions, which we have organized under the titles of Probability, Statistical
Physics, and Mathematical Genetics.

1. Probability

Bernoulli distribution: A random variable X has a Bernoulli distri-
bution if it has probability p of being equal to 1, probability 1 —p
of being equal to —1.

coalescence: A family of random processes X, Y, Z, ...are said to
coalesce if there is some random time 7' (the coalescence time) at
which they are all equal: X(T) =Y (T) = Z(T) = .... Sometimes
called grand coupling, since two processes X, Y are said to couple
if X(T) =Y (T) for some random time 7T'.

conditional probability: The conditional probability P[A|B] of A
given B is the ratio P[A and B]/P[B] of the probability of both
A and B to the probability of B.

coupling technique: The technique of constructing two random
processes X and Y such that (a) individually both X and Y have
specified statistical behaviour, but (b) the joint behaviour of X
and Y meets some useful requirement (perhaps X always lies be-
low Y, or perhaps X and Y couple with X(T) = Y(T) at some
random time T, or ...). Coupling from the Past (CFTP) uses
coupling techniques to convert favourable MCMC algorithms into
exact simulation algorithms.

Gibbs sampler: A specific form of MCMC in which values X,, at
successive sites n are updated using the full conditional distribu-
tion of X, given the values X,, at all other sites m # n. Also

xiii
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known as the heat bath sampler. Successive sites n may be chosen
systematically or randomly.

Ising model: A random field, giving a random value or spin X. i =
+1 to each site (i,7). The probability distribution of the value
Xi,j = =1 depends on the pattern of its neighbouring values.
occlusion: A term used in image analysis when one item partially
covers or occludes another item.

Poisson process: A random point pattern such that the number
X (A) of points falling in a region A has a Poisson distribution of
mean proportional to the size of A; numbers of points falling in
non-overlapping regions are statistically independent.

posterior distribution: The conditional probability distribution of
an unknown parameter 6 after data is observed, and hence con-
ditional on that data. Thus if we observe the result Y = y then
the posterior distribution of 6 lying in the region A is given by the
conditional probability P[§ € A|Y = y].

prior distribution: The probability distribution of an unknown pa-
rameter ¢ before data is observed (in the Bayesian paradigm of
statistics, the prior distribution expresses one’s beliefs about what
value might be taken by 6).

probability distribution: The probability measure obtained by con-
sidering the probabilities P[X € A] of a random object X taking on
values in various regions A. Often abbreviated to the distribution
of X, used as shorthand to refer to the statistical behaviour of X
considered on its own.

probability measure: The mathematical entity capturing the no-
tion of probability: informally, a probability measure P assigns a
probability P[A] to each of a family of possible events A. Probabil-
ity measures must obey additive and countably-additive laws, and
their values must lie between 0 (expressing almost impossibility)
and 1 (expressing almost certainty).

random walk: A random process which moves by independent iden-
tically distributed jumps.

resampling: Given a set of values obtained by drawing from a prob-
ability distribution (for example, the sample obtained at step n of
a sequential Monte Carlo scheme); resampling is the procedure of
drawing a new sample from these values, typically according to
appropriate resampling weights.
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2. Statistical Physics

autocorrelation time: A typical time scale for the dynamical corre-
lation (time-displacement) function, (Q(t)Q(0)) — (Q(0))2, for some
observable Q.

Boltzmann weight: When system is in thermal equilibrium, the
probability of a state is assumed to be proportional to e—E/(ksT),
where E is the energy of the state, T" is temperature, and kg Boltz-
mann constant. Such a distribution is also called the canonical

distribution.

e canonical (Gibbs) ensemble: see Boltzmann weight.

coezisting phases: A particular set of model parameters or phys-
ical conditions, such that two or more phases exist, such as the
coexistence of water and ice.

coupling constant: the constant J in Ising model where the energy
is given by —J >, ;s 0i0;.

dynamic universality class: A class of models with the same static
and dynamic (time-dependent) critical exponents in a second-order
phase transition.

energy function: The total energy of a system, also known as Hamil-
tonian.

entropy: One of the most important thermal dynamic functions
related to the degree of disorder. It is given by Boltzmann’s famous
formula S = kg InQ where Q is the number of microstates.
equilibration: The Monte Carlo steps used to let the system reach
equilibrium or limiting distribution.

external magnetic field: extra term of energy in the form e.g., —ho;,
in an Ising model; h is called the magnetic field.

free energy: thermodynamical functions, defined, e.g. for Helmholtz
free energy, F = —kpT In Z,where Z is partition function.
Glauber dynamics: A Markov chain dynamics in continuous time,
with the transition rate o; — —o; (for the case of Ising model),

% [1 -0 tanh((kpT) Z L)l «

J

Hamiltonian: (a) The energy function viewed as variables of
coordinates and momenta. This function H(p,q) gives the
Hamilton’s equation of motion, § = 0H/dp, p = —0H/dq. (b) the
operator in Schrodinger’s equation 1ROV /0t = HU. (c) Sometimes
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the terminology is used more loosely; the “Hamiltonian” can be
used to refer to the energy of a system.

o heat-bath sampler: See Gibbs sampler.
o heat-bath update: A single step of a heat bath or Gibbs sampler (see

elsewhere).

e Helmholtz free energy: see free energy.
e hysteresis: a metastable process where increasing a parameter of a

model slowly (say the magnetic field) from hg to h; traces out a
function f4 (h) which does not agree with a reverse process of h;
to ho in same observable f_(h).

metastable: A state of a system which looks like in equilibrium for
finite period of times, but is in fact not in equilibrium in the limit
of time going to infinity.

Metropolis update: A popular choice of a transition rate in Monte
Carlo dynamics, with a form min[1, exp(—(E'— E)/(kgT))], where
E' is new energy and E is old energy.

microcanonical temperature: defined as 1/T = 0S/OF where S is
entropy, and F is (internal) energy.

microstate, configuration: A state described by a set of dynamical
variables, also known as a configuration.

multicanonical simulation: A Monte Carlo simulation in an artifi-
cial ensemble with probability distribution of energy being a con-
stant.

O(3) o-model: the O(n) model with n = 3.

e O(n) model: a model with Hamiltonian — >ij Jijoi - 0, where o

is an n-dimensional unit vector.

e observable: Average of any variables with respect to a distribution.

partition function: The sum of the Boltzmann weights over all
states, or the normalization constant of the Boltzmann distribu-
tion function, commonly denoted by Z.

Potts model, Potts spin: A generalization of the Ising model with
Hamiltonian —Ei,j Jij0o;,0;, Where o; = 1,2,...,q is known as
Potts spins.

specific heat, heat capacity: Defined as d(E)/dT, where (E) is the
ensemble average of energy, and T is temperature.

supercritical slowing down: is a process with correlation times that
depend on system dimensions exponentially, such as in a first-order
phase transition.
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3. Mathematical Genetics

allele: One of two or more alternative forms of a gene, only one of
which can be present in a chromosome.

Baum-Welch algorithm: An algorithm to estimate hidden Markov
model parameters with the maximum likelihood of generating the
given symbol sequence in the observation vector.

centromere: A constricted region of a chromosome that joins the
two sister chromatids to each other during cell divisions. See also
chromatid.

chromatid: A duplicated chromosome that is held together in the
middle. On each of the sides of the chromatid is an exact copy of
the original chromosome.

crossover: The process of exchange of genetic material between
pairs of homologous chromosomes during meiosis. See also homol-
ogous and meiosis.

DNA: An abbreviation for deoxyribonucleic acid. The material
inside the nucleus of cells that carries genetic information.

genetic interference: The effect that the presence of one crossover
reduces the chance of another occurring in its vicinity.

genetic marker: Sequence of DNA that can be easily identified and
which therefore can be used as a reference point for mapping other
genes.

genome: The total genetic material of an organism, comprising the
genes carried on its chromosomes.

genotype: The genetic information carried by a pair of alleles. See
also allele.

hidden Markov Model: (in bioinformatics) A probabilistic model
used to align and analyze DNA or protein sequence datasets by
generalization from a sequence profile.

homologous: (in genetics) Describing a pair of chromosomes having
identical gene loci. One member of the pair is derived from the
mother, the other from the father. See also locus.

inheritance: The transmission of genetic characteristics from par-
ents to offspring.

linkage: The tendency for certain genes to be inherited together
due to their physical proximity on the chromosome.

locus: (in genetics) A position on a chromosome occupied by a gene.

e lod score: The likelihood (value) that two genes are linked.
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o MCMC: Abbreviation for Markov chain Monte Carlo.

meiosis: A type of nuclear division such that each child nuclei
contains half the number of chromosomes of the parent.
Metropolis-Hasting algorithm: A Markov chain Monte Carlo algo-
rithm that is used to simulate from a complex distribution. See also
Metropolis update.

missing data: Missing data occur when some or all of the values
for a sampled unit are absent in the dataset.

mitosis: A type of cell division in which a single cell produces two
genetically identical cells.

pedigree: (in genetics) A digram showing the descent relationship
of a group of related individuals.

peeling algorithm: (in bioinformatics) An algorithm for computing
the likelihood of an evolutionary tree.

phenotype: Visible biochemical characteristics of an organism that
are produced by the interaction of the genes and the environment.
quantitative trait: A phenotypic character associated with partic-
ular genes. The phenotype can be described with a continuous
(rather than a discrete) distribution. See also phenotype.
Rao-Blackwellization: In statistics, it refers to the “Rao-Blackwell
theorem” by C. R. Rao (1945 Bull. Calcutta Math. Soc. 37, 81-91)
and David Blackwell (1947 Ann. Math. Stat., 18, 105-110).
recombination: The process of exchange of DNA between homol-
ogous chromosomes in sexually reproducing organisms. See also
homologous.

sequential imputation: A sequential Monte Carlo algorithm which
is used to impute the missing data.

SNP: An abbreviation for Single Nucleotide Polymorphism, a sin-
gle basepair change in a sequence of DNA.
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