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Preface

This book is written for students of biology and medicine who are in-
terested in investigating the properties of nerve fibers. A great number of ex-
perimental facts known to us at present are described and interpreted on the
basis of our present level of understanding of morphology, biochemistry,
and physical chemistry of the nerve fiber. Old theories, which were once
popular, are also discussed in some detail, for the experimental bases of
those theories are still meaningful and ought not to be forgotten. Throughout
this volume, effort is made to trace the origins of the concepts that are im-
portant in studying the physiology of the nerve fibers.

Historically, evolution of the study of physiology of nerve fibers is linked
closely with that of electrochemistry. The foundations were laid by promi-
nent physical chemists: Hermann Helmholtz (1850), Wilhelm Ostwald
(1890), Walther Nernst (1899), and others. In addition, many important dis-
coveries in physical chemistry were made by investigators known as biolo-
gists or physiologists (see Chapter 13). Thus, great efforts were made in clas-
sical physiology to explain properties of nerve fibers in physicochemical
terms.

With the advent of the age of electronic engineering, however, the tradi-
tionally close tie between physical chemistry and physiology was weakened
considerably. Driven by the increasing need for advanced knowledge of var-
ious electronic devices employed in their experiments, investigators of phys-
iology started to interpret physiological findings in terms of electronic engi-
neers’ concepts, e.g., positive feedback, channels, gates, equivalent circuits,
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Xiv PREFACE

and less emphasis was placed, in recent years, on physicochemical ap-
proaches. | have therefore made a conscious effort to ““translate’”” modern
electrophysiological terms into physicochemical language.

One of the difficulties encountered in writing this book has been that
many students of biology and medicine are not sufficiently familiar with the
basic concepts in thermodynamics and electrochemistry. To alleviate this
difficulty, an effort has been made to refer to textbooks and papers where the
concepts employed to explain electrophysiological data are explained.

This book consists of five general areas of investigation. In Chapter 1, the
significant events that led us to the present state of understanding of the be-
havior of nerve fibers are given in chronological order. In Chapters 2 and 3,
the properties of the frog sciatic nerve, known before the advent of the sin-
gle-fiber technique, are described. An historical account of the discoveries
of the action current and conduction velocity and old theories of nerve exci-
tation are presented. Chapters 4 through 7 deal with properties of isolated
myelinated nerve fibers. The process of saltatory conduction and experi-
mental facts concerning electrical excitation are explained. In Chapters 8 to
14, old and recent experiments on squid giant axons are discussed. | have
focused on experimental results obtained by using the techniques of in-
tracellular perfusion. The experimental results obtained were interpreted on
the basis of the theory developed by Jacques Loeb (1900) and Cremer (1906)
and combined with the concept of stability of the membrane. In Chapter 15,
| have directed the discussion toward the experimental findings obtained by
recording nonelectrical signs of nerve excitation. The behavior of dye mole-
cules in and near the axon membrane has yielded useful information about
the state of membrane macromolecules during nerve excitation.

I express my sincere gratitude to Nobuko Tasaki and Patricia Kenny for the
preparation of figures and charts. | also wish to thank Zelda Wolk, Mary
Clampitt, Irma Zimmerman, and Sandra Means, who prepared the manu-
script of this book for publication. | thank Professors Torsten Teorell and
Akira Watanabe, Drs. Paul Maclean and Jorgen Fex, and members of the
Laboratory of Neurobiology who read portions of the manuscript and gave
me valuable suggestions. | am also grateful to the many physiologists who
permitted me to reproduce various figures and tables: Professor A. L. Hodg-
kin, Dr. K. S. Cole, Professor A. F. Huxley, Dr. P. Rosenberg,and Dr. B. G.
Uzman.

Ichiji Tasaki
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1. Introduction

In this book, a large number of experiments on physiological properties of
nerve fibers are described and the results are analyzed from a physicochemi-
cal point of view. It is shown that physiology and electrochemistry of nerve
fibers have developed to the present level in three, more-or-less discrete,
stages. The discovery of the action current and of the conduction velocity of
a nerve impulse marked the opening of the first stage. The second stage
started when electrophysiological methods for examining properties of indi-
vidual nerve fibers were devised. The invention of the technique of intracel-
lular perfusion laid the foundation for the third stage. Studies of nonelectri-
cal signs of nervous activity furnished, from time to time, valuable
information concerning the physicochemical nature of excitation processes.
It is emphasized that every significant achievement in the field has been in-
variably preceded by advancements in allied sciences.

The significant events that contributed to the development of our present
knowledge about the properties of nerve fibers are listed below in chrono-
logical sequence.

1746: Leiden jar was invented; physiological action of electric
shocks was widely recognized.

1791-1800: The Galvani—Volta controversy aroused great interest in
studies of electricity; Volta’s pile—a continuous source of
electricity—was invented.

1808: Na, K, Ca, Mg, etc., were discovered by electrolysis (Davy).

1822: Galvanometer was invented (Ampére and Babinet).

1828-1840: Injury current of the muscle was recognized (Nobili, Mat-
teucci).

1843-1848: Action current of the muscle and nerve was discovered (du
Bois-Reymond).

1850: The velocity of nerve conduction was determined (Helm-
holtz).

1855: Fick’s diffusion equation was published.

1871: The all-or-none property of the cardiac muscle was de-

scribed (Bowditch).
Node of Ranvier was discovered (Ranvier).
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1879:

1880:

1882-1886:

1883:

1885:
1890:

1889-1890:

1899-1910:

1899-1912:

1900-1920:

1911:

1926-1928:

1934:

1934-1939:

1935-1936:

1937-1940:

1939:

1939-1941:

1939-1942:

1. INTRODUCTION

Cable properties of the nerve were examined and the local
current theory was proposed (Hermann).

Effect of K ion on electric properties of the muscle was dis-
covered (Biedermann).

Salt solution for maintaining the normal contractility of the
heart muscle was described (Ringer).

Dissociation of electrolytes in water was demonstrated (Ar-
rhenius).

The mobilities of ions were determined (Kohlrausch).

The concept of ionic (charged) membranes, physical and
biological, was formulated (Ostwald).

The Nernst—Planck electrodiffusion equations were formu-
lated and the origin of emf’s in electrolyte solutions was
clarified.

The theory of nerve excitation of Nernst and Hill overshad-
owed the old theory of du Bois-Reymond.

Attempts were made at explaining bioelectric phenomena on
the basis of the Nernst—Planck equations (Nernst, Cremer,
Bernstein).

The importance of Ca ion in excitation and contraction was
recognized, and the colloid—chemical (macromolecular)
theory of nerve excitation was proposed (Loeb, Héber,
Bethe).

Donnan’s paper on membrane equilibrium was published.
Electric responses of single myelinated nerve fibers were re-
corded by using electronic amplifiers (Adrian, Zotterman,
Bronk).

The importance of Ranvier nodes in excitation and conduc-
tion was recognized (Kubo, Ono, Tasaki, Erlanger, Blair).
Intrisic rhythmicity of the nerve fiber was studied (Monnier,
Fessard, Arvanitaki).

The Teorell-Meyer—Sievers membrane theory was formu-
lated.

The validity of the local circuit theory was established (Rush-
ton, Hodgkin, Tasaki, Katz, Schmitt).

The fall of the membrane impedance during action potentials
was demonstrated (Cole and Curtis).

Intracellular recording of the resting and action potentials
was accomplished (Hodgkin, Huxley, Cole, Curtis).

The role of the myelin sheath and the node of Ranvier in
nerve excitation and conduction was clarified (Tasaki).
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1949: The importance of extracellular Na ion in nerve excitation
was emphasized (Hodgkin and Katz).
The method of space clamping of squid giant axons was in-
vented (Marmont).

1952: The process of nerve excitation was explained on the basis of
an equivalent electric circuit (Hodgkin and Huxley).

1961-1962: The technique of intracellular perfusion was invented (Baker,
Hodgkin, Shaw, Tasaki, Watanabe, Takenaka).

1967-1969: Action potentials were recorded from axons with only a Na-
salt solution internally and a Ca-salt solution externally (Wa-
tanabe, Tasaki, Lerman). Bistability of the nerve membrane
was emphasized (Tasaki).

1967-1971: Assumption of spatial independence of Na and K channels
was popularized by a number of investigators.

1968: Changes in turbidity and in birefringence during action po-
tentials were discovered (Cohen, Keynes, Hille).
Optical signals were recorded from vitally stained nerve
fibers (Tasaki, Watanabe, Sandlin, Carnay).

1980: Swelling of nerve fibers during action potentials was demon-
strated (Tasaki and Iwasa).

At present, the field of investigation with which we are concerned is not
exactly in a rapidly developing stage. Nevertheless, a number of investiga-
tors are making attempts at advancing the frontier of our knowledge. In re-
cent years, electrophysiological properties of “‘single ion channels’” have
been pursued on the premise that there are two discrete conformational
states in the macromolecular elements of the membrane. Vigorous efforts
are being made also toward elucidating the organization of various macro-
molecular elements in and near the axon membrane by using biochemical,
electron microscopic, and immunological techniques.

Currently, a few studies are being conducted indicating that ion channels
for different alkali ions in the nerve membrane are not independent. How-
ever, it seems unlikely that the proponents of the independence hypothesis
will be convinced by the new and the old studies which refute the hypoth-
esis that there is an independent channel for each of Na-, K-, and Ca-ions.

Reflecting on the difficulty of convincing his opponents, Max Planck once
remarked that, in physics, a new idea is not usually accepted by convincing
one’s opponents step by step, but rather, it is accepted when the opponents
die out and the new generation accepts the idea from the outset (see p. 267
in “Wege zur physikalischen Erkenntnis,” Hirzel, Leipzig, 1933). In the field
of physiology and medicine, the factors that determine the acceptability and



