RICHARD E. HASKELL

ORTRAN PROGRAMMING

using structured flowcharts

FORTRAN PROGRAMMING
USING
STRUCTURED FLOWCHARTS

Richard E. Haskell

School of Engineering
OCakland University
Rochester, Michigan

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris, Stuttgart

A Subsidiary of IBM

Compesitor and llustrator Basil Wood

Acquisition Editor Robert Safran
Project Editor Jay Schauer
Cover Designer Judi McCarty

© 1978 Science Research Associates, Inc.
All rights reserved.

Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Haskell, Richard E
FORTRAN programming using structured flowcharts.

Includes index.

1. FORTRAN (Computer program language) 2. Structured
programming. |. Title.
QA76.73.F25H38 001.6'424 77-23931
ISBN 0-574-21135-7

10 9 87 65 4 3 21

To Jeff, Debbie, and Kim

PREFACE

FORTRAN has traditionally been taught in introductory com-
puter courses. This practice has been due in part to the
widespread availability of efficient FORTRAN compilers, the
problem-solving capability of the FORTRAN language, and the
position of FORTRAN as the earliest higher-level language
in general use.

The introduction of the ideas of structured pro-
gramming in recent years has led to criticism of the FORTRAN
language as being unsuitable for structured programming.
This notion is based on the fact that FORTRAN does not con-
tain statements that are directly related to the more common
control statements associated with structured programming.
As a result of this situation a number of proposals have
been made to add new "structured programming" statements to
the FORTRAN language, and many structured FORTRAN prepro-
cessors have been so implemented at various computing in-
stallations. There is, however, no uniformity to these pre-
processors, and therefore one of the main advantages of
FORTRAN programs, namely their portability, is lost.

The purpose of this book is to show that structured
programs can be written in standard FORTRAN without the need
for any preprocessor. These programs can be run with any of
the present-day FORTRAN compilers, thus maintaining the pri-
mary advantage of portability. The key to writing structured

ix

programs in FORTRAN is the use of structured flowcharts as an
integral part of the program listing itself. Traditionally,
the program flowchart and the program listing have been con-
sidered to be separate entities. The technique presented in
this book for writing structured programs in FORTRAN begins
by writing the program as FORTRAN arithmetic and logical ex-
pressions within the "boxes" that make up the structured
flowchart. This form of the program can be written directly
on a FORTRAN coding form beginning in column 21, The logic
of the program is easily understood from this form of the
program listing.

In order to make this form of the program executable
using a standard FORTRAN compiler, the left-hand side (col-
umns 1 through 21) must be filled in with appropriate FORTRAN
control words. This mechanical process is easy to learn and
takes little time once the program itself has been written on
the coding form. The computer listing will contain only
FORTRAN arithmetic and loglcal expressions in the spaces be-

yond column 21. The structured flowchart for the program can
then be drawn directly on the program listing, thus obviating
the need for a separate flowchart to complete the program doc-
umentation. This method has the advantage that the flowchart
is never ocut-of-date with the current version of the program
inasmuch as the program listing, in a sense, always carries
its flowchart along with it.

Programs written using the techniques described in this
book are always in a modular, well-structured form, thereby
greatly increasing the readability of the programs and simpli-
fying the process of program modification. I have arrived at
the form of writing FORTRAN programs described in this book
after several years of trying different methods for writing
structured programs (including switching to ALGOL). I now
prefer to write all of my own programs in FORTRAN u31ng the
method described in this book. I find the final version of
the program that includes the structured flowchart to be
more readable than even its ALGOL counterpart.

The sample programs presented in this book have all
been class tested and have been used at one time or another
as programming assignments in an introductory freshman compu~
ter course. In addition all of the material is covered in a
4-credit freshman course, Introduction to Computer Secience.
The course assumes no previous computer background but is in-
tended for students who are majoring in computer science,
engineering, mathematics, or a physical science. The students
will write from 10 to 12 programs of their own throughout the
course.

There has been considerable discussion about the best
way to teach structured programming. Some teachers have advo-
cated that students should write unstructured programs to be-
gin with and then "convert" them to structured form. I com-
pletely disagree with this approach. Students do not have to
be taught to think in an unstructured manner and to write un-
structured and disorganized programs. Indeed, I have found
that students develop good programming habits only if they
have been exposed to well-structured programs from the begin-
ning. The fact that this can be done using standard FORTRAN,
as this book illustrates, makes the introduction of structured
programming at the beginning of the first course in computer
programming a realistic possibility.

The order of presentation of material in the book is
designed so that a new and more advanced concept is introduced
with each new sample program. The key to success in using this
book is to study each sample program carefully and then to write
similar programs based on the problems at the end of each chap-
ter. I believe that people learn to program only by writing
programs and that they learn to program well only by being con-
tinually exposed to well-written programs..

Chapter 1 introduces the basic ideas of structured pro-
gramming and structured flowcharts. The three boxes that make
up a structured flowchart (sequence, iteration, and alternation)
are introduced, and the technique of developing a structured
algorithm using a top-down programming approach is illustrated
with a detailed example. The first FORTRAN programs are intro-
duced in Chapter 2. These are simple input/output programs in
which data is read from data cards and printed on the line
printer. Some teachers may gquestion this early introduction,
but my experience has indicated that a couple of weeks of for-
matting input/output at the beginning of the course builds
self-confidence and pays big dividends later on when the stu-

dents are able to handle any input/output problem without con-
sidering it to be a major hurdle.

Chapter ‘3 introduces a FORTRAN construct that is often
overlooked in introductory courses, namely, the end-of-file
exit in a READ statement. Although this is not part of the
ANSI-66 standard, it is available on most current FORTRAN
compilers. This device is used to construct a READING itera-
tion box that provides a convenient method for writing simple
looping programs. Arithmetic operations and arithmetic ex-
pressions are also discussed in this chapter.

The intelligent use of logical variables is another

topic that is crucial to writing well-structured programs
but often is almost entirely neglected in beginning FORTRAN

xi

courses. Chapter 4 begins with a discussion of logical ex-
pressions and logical variables and then develops the general
DO WHILE iteration box. This is the "workhorse" looping box
that is used in most of the sample programs. The DO UNTIL
iteration box is also described in Chapter 4.

The introduction of the IF...THEN...ELSE alternation
box in Chapter 5 completes the discussion of the basic struc-
tured flowchart boxes that can be used to write any computer
program. Library functions and statement functions are also
introduced in this chapter.

Subscripted variables and DO loops are introduced in
Chapter 6. A sequential search algorithm and a straight in-
sertion sort algorithm are included in the sample programs of
this chapter. Subprogramming, including functions and sub-
routines, is covered in Chapter 7. The sample programs in
this chapter include plot routines and an index sorting sub-
routine.

In Chapter 8 a large program for storing information
concerning personal checking accounts is developed. This pro-
gram illustrates the use of the top-down programming approach,
multidimensional arrays, a CASE box, and the COMMON statement.

A method for using this book in conjunction with a
FORTRAN preprocessor is described in Appendix A. FORTRAN
statements that have limited use (or that should be avoided
altogether) in writing structured programs are discussed in
Appendix B.

Hundreds of students have taken an introductory FORTRAN
course based on early and incomplete versions of this book.
Their patience, cooperation, questions, and critical comments
are gratefully acknowledged. In addition, I have benefited
from many discussions about structured programming with David
Boddy and Glenn Jackson of Oakland University, and Jim Elshoff
of General Motors Research Labs. The suggestions of many re-
viewers, in particular Marilyn Bohl of IBM, have been very
helpful. The loving support and understanding of my wife, Edie,
was an essential ingredient to the completion of this book.

Richard E. Haskell
Rochester, Michigan

xii

FORTRAN PROGRAMMING
USING
STRUCTURED FLOWCHARTS

TABLE OF C

ONTENTS

CHAPTER 1 Introduction to Structured Programming...........
1.1 What is Structured Programming?...... cessessanan .
1.2 The Three Boxes of Structured Coding.....ceeeeeee
1.2.1 The First Box - Sequence ..c..evecae .
1.2.2 The Second Box - Iteration reesenesannas
1.2.3 The Third Box - Alternation ceseanen
1.3 Structured AlgorithmS....ccveeeessccecsscanns ceen
1.4 Structured Programming and FORTRAN..... tesessnans
1.5 SUMMAYY..oeesecocsccenncsancs cetassesens ceerene .
QUESTIONS .. cecvecsonsonsosscases sessssesssesavsssercscsnans

CHAPTER 2 Introducing the Computer......

2.1 sStoring Information in the Computer............. .
2.2 Reading and Printing Integer Numbers............ .
2.3 Reading and Printing Real Numbers....... cesesanae
2.4 Reading and Printing Character Strings...........
2.5 Summary and DisSCUSSION.....icceecrersncscasarans .
EXERCISES.ccoeceesssscnssosacssse teesesanseas ceesesesnanne
PROBLEMS.:ccesaoccess esecsssen . cecsssssseensse
CHAPTER 3 Calculating with the Computer.......ceeveveeeeans
3.1 Arithmetic Operations.......eeeeeve. s e esrsese e
3.2 A READING Iteration BOX..eeeeeoeescacescsasoasaaan
3.3 Arithmetic EXpPreSsSiOnS....eeceesceccssoccecssanss
3.4 Summary and DiscusSSion....ecccieecevancenans sesenn .

|

odu; >

11

21
22
23
23
28
38
43
45
49
51
53
53
60
67

72

Contents

......... ceeevssessrenenrss 713
ceeesean Ceeeeans cecennnesss 75
...... ceeeceanss 719
4.1 Logical Expressions and Logical Variables........ 80
4.2 Implementing the DO WHILE Box in FORTRAN......... 83

4.3 The DO UNTIL Iteration BoOX....:oo.. .

4.4 Summary and DisCuUSSiON...eecssecstccssencssscesase.l100
EXERCISES .coceeecesescncansassasoeossana
PROBLEMS..... I e Y
CHAPTER 5 The IF...THEN...ELSE Alternation Box..... ceeseessl1l3
5.1 Implementing the IF...THEN...ELSE Box in FORTRAN 114

5.2 Library FUNCtioNnS..ecciieieenosencnersasensaansseal20

5.3 Statement FUnCtiOnNS....veeeeesssssssevocsnnnesessl2l
5.4 Summary and DiscCuSSiON...icicivereecreneccesesess131
EXERCISES ccecveesccsnconases I eeessessesl3’
PROBLEMS .t veceeecccncsonss P e ¥/
CHAPTER 6 Data ArrayS.scssccesccss

csescsvassscerseessvssesseldh

6.1 ArrayS.ccscsccsescecsses cserssssecssessesseanssensldf
6.2 DO LOOPS:eesesccansss seesesenne esessecseseas eese.148
6.3 Summary and DiscuSSiON...cesvecescsecctocenneccasalb9
EXERCISES s eseveeveersrssosssascenssssrasssnsssssnsasassansl?3
PROBLEMS . ¢t eeeveencccces wesesaseaserseenana B v X!
CHAPTER 7 Subprogramming....... ceeanen ceeas
7.1 FunctionS.....ceceee.. Cesseeunceseeaaserneresranen 182

7.2 Subroutines..... et e s et s steses e neacs .

vi

Contents

7.3 Summary and DisSCUSSIiON.,eseesrvsscvosacrassassness 208
EXERCISES. . cccaessnsansancans ceesscanees ivesssssessrssassas 210
PROBLEMS .« seeceasosencoessosascessassccsscsassssascsnsssssssnsse2l2

CHAPTER 8 Top-Down Structured Programming......sceceecesee-s219

8.1 Communicating with Arrays in Subprograms.........220

8.2 The CASE Structured BoX........ ceecane cecenseasann 230

8.3 Summary and Discussion...... cseesrersaseassessnes 249
EXERCISES: v eesescascsone ssesessssssseestetse e s euase ...250

PROBLEMS :csvecesscesannscnna cessenessasans eetesareseesss 252

APPENDIX A Structured Programming Using FORTRAN
PreprOCEeSSOrSeasrsrsressscassnssssaressrssasseas 299

APPENDIX B Some Other FORTRAN Statements..... cessecseensas 265
Arithmetic IF Statement.......... ceescesntasenans
Computed GO TO Statement......ccecoeavecancecns ceeesee
Assigned GO TO Statement..eesvecrsserarscnssscassssseces 266
The PRINT Statement....cecvveeceescenessssesnsssssceaas 267
The NAMELIST Statement...c.secceeeececeescccrsncesseaene 267
The DIMENSION Statement..cceceecsesccsccacccsscesssssas2l0
The COMMON Statement....seeceeeesssscesosevssnsssecenss 271
The EQUIVALENCE Statement.....ceicesseesscscsesenssossse 271
COMPLEX and DOUBLE PRECISION Type DeclarationS........ 273
The EXTERNAL Statement....ceeseseccessoccascecssncescas 2l

The BLOCK DATA SUubprOgraM...sccsesecessccacssesssssnasse 274

vii

Contents

SAMPLE PROGRAMS

Section Sample Page
Reference Program Title No.
2.2 1 My AEavvessnasssssasssssssssnansss 30
2.3 2 Reading and Printing Real Numbers.. 39
2.4 3 My NOGME@.oeeesooesassooncsossansnens 43
3.1 4 Checkbook BalanCe. ... cceveeevecnsns 55
3.2] Average Of Test SCOre€S...eseerssses 61
3.3 6 Land ACYEagC..seevsrsssasssassssnssns 69
4.2 7 Fibonacci Sequence.....ccaeeeesecees 85
4.2 8 How to Become a Millionaire........ 92
5.1 9 Largest and Smallest Stat€e.eeseen..1l6
5.3 10 Ladder-Alley Problem Using a

Fibonacci Search.....vecvevencnens.124
6.2 11 Average of Test SCOreS....eeeeessesl53
6.2 12 Sequential Search...cesecececsansas 158
6.2 13 Straight Insertion Sort............ 163
7.1 14 The Function MEAN(A,N}) e eereaasansan 182
7.2 15 Mean and Standard Deviation

Subroutine..ieceseecsenciansncensas 187
7.2 16 The Binomial Distributicon..........191
7.2 17 Index Sort Subroutine..............196
7.2 18 Population of the States...........203
8.1 19 Searching a Two-Dimensional Array..223
8.2 20 Personal Checking Account Records..233

viii

INTRODUCTION TO
STRUCTURED PROGRAMMING

This book is concerned with solving problems on a digital
computer. The reader will learn how to develop computer
solutions to problems and how to code these computer programs
in FORTRAN. The book's theme, structured programming, is a
technique designed to make a good programmer better.

This chapter tells you the whats and whys of struc-
tured programming. It introduces the three basic struc-
tures from which all computer programs can be constructed.
It then explains top-down programming by looking in detail
at how a structured program can be written, using as an ex-
ample the baking of peanut butter cookies. Finally, it de-
fines the relationship between structured programming and
the FORTRAN programming language. This latter topic will be
our concern for the remainder of the book.

1.1 What is Structured Programming?

A digital computer is an electronic machine that can store
information, transfer data from one location to another,

and perform certain logical and arithmetic operations. The
hardware of a digital computer consists of the electronic
circuitry and related physical devices, whereas the computer
programs that make this hardware perform useful tasks are
called software,.

Introduction to Structured Programming

In the early days of computers and continuing through
most of the 1960s, the cost of the hardware was the dominant
cost in computer systems. However, over the last several
years the cost of software has exceeded the cost of hard-
ware in most large computer organizations. This change in
the cost balance between hardware and software is due to two
main factors. On the one hand, hardware costs have decreased
dramatically as the result of new technological developments.
A major development has been the widespread use of large
scale integrated (LSI) circuits. Using such techniques, very
complex computer circuits can be mass produced at low cost.
On the other hand, software costs are primarily personnel
costs, and as everyone knows, these costs always increase.

Given this state of affairs, it is prudent to look for
ways of decreasing software costs. One way is to increase
programmer productivity. Studies have shown that a large
fraction of the total programming effort is spent in debug-
ging programs that don't work properly and in modifying exist-
ing programs. If programs were initially written in such a
way that errors were minimized and the programs were easily
modifiable by other people, this would be a large step in the
direction of reducing software costs. These are some of the
goals of structured programming.

Structured programming 1s basically a programming style
that is designed to make the logic of programs more under-
standable, the code of programs more readable, and the execu-
tion of programs more reliable. The central feature of
structured programming is the use of a minimum number of
basiec building blocks for which the logic is self-evident.
Thus, the philosophy is to avoid tricky logical constructs
and instead use simple logic that is easily understood by
others, even if it results in slightly more computer time.
Remember software (including software maintenance) now costs
more than hardware. The three basic building blocks of
structured pregramming will be described more fully in the
next section.

Another characteristic of structured programs is their
modular structure. If a change in one part of a program can
inadvertently cause undesirable changes in other parts of
the program, then program maintenance is a difficult problem.
Thus, structured programs consist of many independent parts
that are separated from each other to the maximum degree pos-
sible. The interconnections between these distinct parts
must follow certain strict rules. By using this type of mod-
ular construction, the programmer can be sure that once one
part of the program is coded and working properly, that part
will not be affected by mistakes made in programming other

Introduction to Structured Programming

parts. This property of program modularity becomes very impor-
tant in large programs.

The idea of top-down programming is also sometimes
associated with structured programming. Top-down program-
ming is much like outlining a report that you intend to write.
First you write the title of the report, then the title of
each chapter. For each chapter you list all subheadings, and
then outline the contents of each of these subheadings. Fi-
nally you actually write some sentences for some part of the
report. You do not necessarily have to start at the begin-
ning, but the overall structure of the report should be clear
in your mind before you begin to write any sentences. The
technique of top-down programming is shown in Section 1.3
where we develop,a structured program for baking peanut but-
ter cookies.

In addition to structured coding using basic building
blocks, program modularity, and top-down programming, struc-
tured programming has also come to mean anything that will
reduce software costs. These topics have included a number
of primarily managerial and organizational techniques, such as
Chief Programmer Teams and Programming Production Libraries,
which are beyond the scope of this book. Rather, we will
focus our attention on how to formulate structured programs
and code them in FORTRAN. In the process of doing this, the
ideas of program modularity and top-down programming will
develop naturally.

Since much of the impetus for structured programming
comes from an attempt to reduce software costs, you may be
saying, "But I don't plan to become a professional programmer;
I just want to learn enough FORTRAN to write my own little
programs that will only be run once and that no one else will
ever read." (You would be surprised at all of the "own 1lit-
tle programs that will only be run once" that are still being
used today. You will be more likely to do small single-shot
computations on small electronic calculators whose computing
power has increased dramatically in recent years.) If you
are going to take the time to write a FORTRAN program to be
run on a general-purpose digital computer, you might as well
take the time to write the program well and in such a way
that if you later decide to modify it you will be able to
do so easily.

But more important, a study of structured programming
should give you a better appreciation of the inherent nature
and structure of computer programs. It will help you to en-
hance your own skill and ability to solve problems. Let us
therefore take a look at the three basic building blocks
that are used in writing structured programs.

Introduction to Structured Programming

1.2 The Three Boxes of Structured Coding

It has been the custom in introductory computer courses to
emphasize the use of flowcharts for solving problems. These
flowcharts were designed to indicate the flow or logic of

the computer program. They consisted of various shaped boxes
interconnected by directed line segments. Since there were
few restrictions on how the boxes could be interconnected, it
was not unusual to wind up with a very complicated flowchart
that was difficult to decipher. Such unstructured programs
are not only difficult to understand, but are also difficult
to modify and therefore costly to maintain.

As a result of this state of affairs, some advocates of
structured programming have abandoned the use of flowcharts
altogether, relying on the structured code itself to adequate-
ly describe the program. While it is true that the logic of
a program should be apparent from the code of a well-structured
program, experience has shown that beginning students of com-
puter programming (and many advanced programmers as well) need
some type of visual display that will communicate to them the
logic of their computer programs.

The traditional type of flowcharts is replaced in this
book with a new kind of structured flowchart that is made up
entirely of the three basic "boxes" described below. There
are a number of advantages to this approach. First of all,
the computer solution for a particular problem can be obtained
before it is necessary to worry about the details of coding
the program in FORTRAN (or any other high-level language).
Secondly, the use of structured flowcharts instead of the more
traditional kind will force all programs to be structured pro-
grams and will encourage a top-down programming approach.
Finally, it will be possible to superimpose the structured
flowchart on the actual program listing from the computer.
This means that a major part of the documentation of a program,
including the flowchart that clearly indicates the logic of
the program, will be included automatically in the computer
listing of the program code.

A structured flowchart is made up entirely of the three
basic building blocks of structured programming. These three
building blocks are all in the form of boxes that can only be
entered from the top and exited from the bottom as indicated
in Figure 1.1. We will now describe these three boxes in
more detail.

