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Yogi Berra is quoted,
“If you come to a fork in the road, take it,”
so I did and ended up here.



Preface

The computer revolution has profoundly impacted how engineers and scientists con-
duct professional activities. In the early 1960s, a computer fully occupied and amply
heated (!) a space the size of a classroom. The PC, introduced in the mid-1970s, was
a “toy.” Yet by the millennia, Linux clusters of cheap gigahertz-gigabyte PCs could
execute truly large-scale computational simulations. Indeed, the “desktop Cray,”
fantasized in ~1980, was here and was truly inexpensive!

The companion maturation of theory and practice in the computational engineering
sciences has been an evolutionary (not revolutionary!) process. It remains highly frag-
mented by discipline, even though computational fluid dynamics (CFD) and computa-
tional structural mechanics (CSM) emerged simultaneously from the research
laboratory in the late 1950s. The former relied on finite difference (FD) methods to con-
vert theory to computable form. Conversely, the latter’s classical virtual work founda-
tion enabled a calculus-based finite element (FE) theory implementation of the
underlying variational principle extremum. Finally, in chemical engineering colloca-
tion methods were developed for process simulations, and at first glance these theories
appear absolutely “linearly independent.”

Research now completed has proven that practically all developments supporting
the computational engineering sciences can be formulated from the extremum of the math-
ematician’s weak form theory termed a weak statement (WS). The weak form process
enables theorization to be completed in the continuum, using calculus, vector field
theory, and modern approximation concepts. When finished, the discrete implementa-
tion of the theory extremum can be formed using FE, FD, and/or finite volume (FV)
procedures. The FE implementation is typically guaranteed optimal in its performance,
that is, accuracy, asymptotic convergence rate, and so on. Furthermore, FE methodol-
ogy leads to precise constructions devoid of heurism, since integral-differential calculus
is used rather than difference algebra to generate the algebraic statement amenable to
computing.

This text develops discrete implementations of WS theory for a diverse variety of
problem statements in the computational engineering sciences. Unique to the FE discrete
development, the resulting algorithms are immediately stated in computable form via a



xii Preface

transparent, object-oriented programming syntax. The engineering science problem
classes developed herein include

® heat conduction

structural mechanics

mechanical vibrations

heat transfer, with convection and radiation
fluid mechanics

® heat/mass convective transport

The text is organized into twelve chapters. Following an introduction, and some very
pertinent overview material, an elementary heat conduction futorial clearly illustrates
all element matrix constructs, the “famous” assembly algorithm and the concept of
error estimation and measurement. Subsequent chapter pairs develop expository one-
dimensional, then general n-dimensional FE WS implementations in each continuum
engineering sciences discipline.

The sequence of developments serves to illustrate, examine, and generalize the avail-
able theoretical error estimates, with the concept of a norm central to this process. In
moving to the convection—diffusion problem class, a sequence of Taylor series manipu-
lations leads to modified conservation principle expressions, expressed in the continuum,
which collectively improve asymptotic convergence rate coupled with annihilation of
significant order discretization-induced phase lag and dispersive error mechanisms.

Incisive computer lab experiments complement each development, with principle
focus to gain a firm usable understanding of approximation error mechanisms as influ-
enced by data nonsmoothness, problem nonlinearity, stability, dispersion error and
boundary conditions, each impacted by the selected FE basis completeness degree. The
n-dimensional computer experiments focus on refinements for error nuances associ-
ated with nonconvex boundaries, phase lag, and artificial numerical diffusion. An inter-
vening brief chapter clearly identifies the connections between FD, FV, and FE discrete
implementations for a Poisson equation in n-dimensions.

Engineers are clearly of the opinion that, “theory is fine, but show me the numbers!,”
which requires theory conversion to code practice. Since the FE-implemented WS the-
ory is highly organized, the algorithm statement in any discipline ends up constituted
of six, and only six, types of data to convert theory to practice. Capitalizing on object-
oriented concepts, these six data types are organized into a template such that the com-
puting statement, including explicit nonlinearity, is unambiguously expressible.

In summary, this text fully develops modern FE discrete algorithms for the com-
putational engineering sciences with applications aimed to available and emergent
problem solving environments (PSEs). Its organization and content has evolved from
two decades of teaching the subject at UT. This text fully obsoletes the predecessor
1991 text Finite Elements 1-2-3, marketed with a “spaghetti” Fortran PC code on a
5.25 inch floppy disk.
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All computer lab exercise MATLAB™ .m files along with the specifically written
MATLAB™ toolbox FEmPSE are available for download from www.wiley.com/go/
baker/finite. The .mph files for the COMSOL design studies may be downloaded
from their user community web site www.comsol.com/community/exchange/?
page=2. University faculty interested in presenting the internet-enabled academic
course from which this text was generated will find complete support materials avail-
able at www.wiley.com/go/baker/finite.

Many colleagues and graduate students have contributed to the creation and refine-
ment of text content. My thinking formality on the subject has benefited from a multi-
decade collegial association with Prof. J. Tinsley Oden. I owe a deep debt of gratitude
to my Computational Mechanics Corp. co-founders Paul Manhardt, who invented the
template concept, and Joe Orzechowski, who assimilated templates into reliable com-
putational syntax for mainly CFD applications.

The dissertation research of Dr. Jin Kim, Dr. Subrata Roy, Dr. David Chaffin,
Dr. Alexy Kolesnikov, and Dr. Sunil Sahu collectively formalized the improved theo-
retical and practical understanding of FE algorithm performance nuances detailed
herein. Dr. Zac Chambers and Dr. Marcel Grubert along with Messrs. Mike Taylor and
Shawn Ericson contributed significantly to polishing these fundamental underlying
precepts to pedagogical acceptability.

A. ]. Baker

Knoxville, TN
January 2012

Note: All color originals are accessible at www.wiley.com/go/baker/finite.



About the Author

A.]. Baker, PhD, PE, left commercial aerospace research to
join the University of Tennessee College of Engineering in
1975, to lead academic research in the exciting new field of
CFD (computational fluid dynamics). Now Professor Emeri-
tus and still Director, UT CFD Laboratory (http://cfdlab.utk.
edu), his professional career started as a mechanical engineer
with Union Carbide Corp. The challenges there prompted
resigning after 5 years to enter graduate school full time in
1963 with the goal to “learn what a computer was and could
do.” The introduction involved driving an IBM 1620 with 5kB
memory and no disk pack! A 1967 summer job with Bell
Aerospace Company required assessing the first publication claiming unsteady heat con-
duction was amenable to finite element analysis. This led to the 1968 Bell Aerospace tech-
nical memorandum, “A Numerical Solution Technique for a Class of Two-dimensional
Problems in Fluid Dynamics Formulated via Discrete Elements,” a truly pioneering expose
in the fledgling FE CFD field. Finishing his dissertation in 1970, he joined Bell Aerospace
as Principal Research Scientist to pursue full-time finite element methods in CFD. NASA
Langley contracts with summer appointments at ICASE led to a visiting professorship at
Old Dominion University, 1974-1975, from which he moved directly to UT forming Com-
putational Mechanics Consultants, Inc., with two Bell colleagues, to assist converting aca-
demic FE CFD research progress into computing practice.

FE < Computational Engineering Sciences with hands-on computing;:

This is the first introductory level text to fully integrate the underlying theory with hands-
on computer experiments supported by the MATLAB"™ and COMSOL™" Problem Solv-
ing Environments (PSEs). You may download all .m and .mph files supporting each
suggested computer experiment, also eight topical lectures for video-streaming on
your PC available from www.wiley.com/go/baker/finite. The academic course engen-
dering the text technical content became totally distance-enabled on Internet in 2005.
Academics interested in presenting this course at their institution may acquire the
complete academic support material at www.wiley.com/go/baker/finite.



Notations

expansion coefficient

plane area; one-dimensional FE matrix prefix; coefficient
generic square matrix

factored global matrix

coefficient; boundary condition subscript;

body force component, generic column matrix
global data matrix

two-dimensional FE matrix prefix

body force, structural FE matrix

coefficient; specific heat

three-dimensional FE matrix prefix, constant, Courant number
coefficient; FE matrix indicator

diagonal matrix, diffusion coefficient

global diffusion matrix

approximation degrees-of-freedom
element-dependent; unit vector component, error
error, a function of (-)

approximation error

discrete approximation error

coordinate transformation data

energy seminorm (subscript), elastic modulus
Hooke’s law matrix

radiation viewfactor

applied force, flux on 9}

kinetic flux vector

finite difference

finite element

finite volume

homogeneous form of a discretized weak statement
gravity magnitude

gravity
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G elastic shear modulus, amplification factor, Gebhart factor

Gr Grashoff number

GWS  Galerkin weak statement

h discretization (superscript), heat transfer coefficient, measure

H Gauss quadrature weight; Hilbert space

[BC] boundary condition matrix

i summation index, mesh node, imaginary unit

i unit vector parallel to x

I moment of inertia; element matrix summation index

(1] identity (diagonal) matrix

i summation index, mesh node

j unit vector parallel to y

] template summation index

(71 coordinate transformation jacobian

[JAC] jacobian

kij element of the [DIFF] and /or [STIFF] matrix

k thermal conductivity, basis degree, index, diffusion coefficient,

k spring constant

k average value of conductivity

k unit vector parallel to z

K template matrix summation index, viewfactor kernel

4 element length; summation index

0) differential equation on 9()

L domain span, length measure, lower triangular matrix, lagrangian

L(-) differential equation on ()

m integer

m; point mass

mGWS  Taylor series-modified Galerkin weak statement

mPDE  Taylor series-modified conservation principle PDE

M elements in "; moment; matrix prefix; particle system mass

M iteration matrix

[MASS] global mass matrix

n index; normal subscript; dimension of domain (); integers, normal coordinate,
time index (subscript)

n outward pointing unit vector normal to O£}

N matrix prefix

N summation termination; approximation (superscript), iteration matrix

NC natural coordinate basis

{N} finite element basis of degree k non-D non-dimensional

P load (data); pressure, iteration index

P point load; Gauss quadrature order

{P} computational matrix, distributed load DOF

Pa non-D parameter on ()

Pb non-D parameter on 9()
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Pr Prandtl number

q generalized dependent variable

Q discretized dependent variable; heat added
{Qh approximation DOF matrix

r reference state subscript; radius

Re Reynolds number

R" the positive real axis

R Euclidean space

{RES}  global matrix statement residual

s source term on {); heat added, tangent coordinate
s unit vector tangent to J€)

S finite element assembly operator; entropy
SOR successive over-relaxation

{S) computational matrix

t time

T temperature, kinetic energy

T, convection heat transfer exchange temperature
T, radiation heat transfer exchange temperature
T surface traction vector

i approximate temperature solution

TE truncation error

TP tensor product basis

TS Taylor series

u displacement vector; velocity vector

u upper triangular matrix

u velocity x component; speed

u discretized speed DOF, phase velocity (speed)
[VEL] global fluid convection matrix

v velocity y component

\% shear force; volume; potential energy

v velocity

w weight function; fin thickness; velocity z component
w weight; work done by system

WF weak form

WS weak statement

x generic unknown

X, X; cartesian coordinate, coordinate system 1 <i<n
X transformed local coordinate

X discrete cartesian coordinate

Y displacement; cartesian coordinate

Y discrete cartesian coordinate

z cartesian coordinate

Z thickness ratio; discrete cartesian coordinate
) scalar (number)
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{} column matrix

" row matrix

[ square matrix

I norm

U union (non-overlapping sum)

N intersection

det [[] matrix determinant

sym symmetric

o coefficient

B coefficient

Y shear strain, coefficient

8ij Kronecker delta

3Q iterate

A discrete increment

€ normal strain, emissivity

¢ electric potential, flow potential
() trial space function; potential function
P potential function

Pg(x) test space

W¥,(x) trial space

n coordinate system in transform space
n; tensor product coordinate system
K thermal diffusivity, wave number
Kap element of a square matrix

A Lamé parameter, wavelength

i Lamé parameter, dynamic viscosity
v Poisson ratio, kinematic viscosity
o() order of (-)

b4 pi (3.1415926 . . .)

0 time integration implicitness factor
® potential temperature

P density, absorbtivity

do differential element on 9}

dr differential element on ()

T normal stress

» frequency

Q domain of differential equation

Q. finite element domain

o' discretization of ()

o) boundary of ()

L natural coordinate system

d(:)/dx ordinary derivative

0(-)/0x partial derivative

\V4 vector derivative

Ve laplacian derivative operator
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