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This book generalizes the classical theory of orthogonal polynomials on the
complex unit circle or on the real line to orthogonal rational functions whose
poles are among a prescribed set of complex numbers.

The first part treats the case where these poles are all outside the unit disk
or in the lower half plane. Classical topics such as recurrence relations, nu-
merical quadrature, interpolation properties, Favard theorems, convergence,
asymptotics, and moment problems are generalized and treated in detail. The
same topics are discussed for the different situation where the poles are located
on the unit circle or on the extended real line. In the last chapter, several appli-
cations are mentioned including linear prediction, Pisarenko modeling, lossless
inverse scattering, and network synthesis.

This theory has many applications in both theoretical real and complex anal-
ysis, approximation theory, numerical analysis, system theory, and in electrical
engineering.
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Introduction

This monograph forms an introduction to the theory of orthogonal rational func-
tions. The simplest way to see what we mean by orthogonal rational functions
is to consider them as generalizations of orthogonal polynomials.

There is not much confusion about the meaning of an orthogonal polynomial
sequence. One says that {¢,}°2 is an orthogonal polynomial sequence if ¢, is a
polynomial of degree n and it is orthogonal to all polynomials of lower degree.
Thus given some finite positive measure p (with possibly complex support), one
considers the Hilbert space L,(u) of square integrable functions that contains
the polynomial subspaces P,, n = 0, 1,.... Then {¢,}32, is an orthogonal
polynomial sequence if ¢, € P, \ P,—, and ¢, L P,_,. In particular, when the
support of the measure is (part of ) the real line or of the complex unit circle, one
gets the most widely studied cases of such general orthogonal polynomials. Such
orthogonal polynomials appear of course in many different aspects of theoretical
analysis and applications. The topics that are central in our generalization to
rational functions are moment problems, quadrature formulas, and classical
problems of complex approximation in the complex plane.

Polynomials can be seen as rational functions whose poles are all fixed at
infinity. For the orthogonal rational functions, we shall fix a sequence of poles
{¥x )32, which, in principle, can be taken anywhere in the extended complex
plane. Some of these y, can be repeated, possibly an infinite number of times,
or they could be infinite. However, the sequence is fixed once and for all and the
order in which the y; occur (possible repetitions included) is also given. This
will then define the n-dimensional spaces of rational functions £, that consist
of all the rational functions of degree n whose poles are among y, ..., ¥»
(including possible repetitions). We then consider {¢,}32, to be a sequence of
orthogonal rational functions if ¢, € £, \ £,_y and ¢, 1L L,_;.
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There are two possible generalizations, depending on whether one general-
izes the polynomials orthogonal on the real line or the polynomials orthogonal
on the unit circle. The difference lies in the location of the finite poles that are
introduced in the rational case. In the case of the circle, the pole at infinity is
outside the closed unit disk. There, it is the most natural choice to introduce
finite poles that are all outside the closed unit disk. This guarantees that the
rational functions are analytic at least inside the unit disk, which allows us to
transfer many properties from the polynomial to the rational case. Moreover, if
the poles are not on the circle, then we avoid difficulties that could arise from
singularities of the integrand in the support of the measure.

If the support of the measure is, however, contained in the real line, then
the pole at infinity may be in the (closure of ) the support of the measure. The
most natural generalization is here to choose finite poles that are on the real line
itself, that is, possibly in the support of the measure for which orthogonality is
considered.

Of course one can by a Cayley transform map the unit circle to the (extended)
real line and the open unit disk to the upper half plane. Since this transform maps
rational functions to rational functions, it makes sense to consider the analog of
the orthogonal rational functions on the unit circle with poles outside the closed
disk, which are the orthogonal rational functions orthogonal on the real line
with poles in the lower half plane. Conversely, one can consider the orthogonal
rational functions with poles on the unit circle and that are orthogonal with
respect to a measure supported on the unit circle as the analog of orthogonal
rational functions on the real line with poles on the real line.

The cases of the real line and the unit circle, which are linked by such a
Cayley transform, are essentially the same and can be easily treated in parallel,
which we shall do in this monograph. The distinction between the case where the
poles are outside or inside the support of the measure is, however, substantial.
We have chosen to give a detailed and extensive treatment in several chapters
of the case where the poles are outside the support. The case where the poles
are in the support (which we call the boundary case) is treated more compactly
in a separate chapter.

This brief sketch should have made clear in what sense these orthogonal ra-
tional functions generalize orthogonal polynomials. Now, what are the results
of the polynomial case that have been generalized to the rational case? As we
suggested above, we do not go into the details of all kinds of special orthog-
onal polynomials by imposing a specific measure or weight function. We do
keep generality by considering arbitrary measures, but we restrict ourselves to
measures supported on the real line or the unit circle. In that sense we are not
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as general as the “general orthogonal polynomials” in the book of Stahl and
Totik [193].

Orthogonal polynomials have now been studied so intensely that many dif-
ferent and many detailed results are available. It would be impossible to give in
one volume the generalizations of all these to the rational case. We have opted
for an introduction to the topic and we give only generalizations of classical in-
terpolation problems of Schur and Carathéodory type, of quadrature formulas,
and of moment problems. There is a certain logic in this because interpolation
problems are intimately related to quadrature formulas and these quadrature
formulas are an essential tool for solving the moment problems.

These connections were made clear and were used explicitly in the book by
Akhiezer [2], which treats “the classical moment problem.” To some extent we
have followed a similar path for the rational case.

First, we derive a recurrence relation for the orthogonal rational functions.
In our setup, this is mainly based on a Christoffel-Darboux type relation. In the
boundary case, this recurrence generalizes the three-term recurrence relation of
orthogonal polynomials; in the case where the poles are outside the support of
the measure, this is a generalization of the Szeg6 recurrence relation.

To describe all the solutions of the recurrence relation, a second, independent
solution is considered, which is given by the sequence of associated functions
of the second kind.

These functions of the second kind appear as numerators and the orthog-
onal rational functions as denominators in the approximants of a continued
fraction that is associated with the recurrence relation. The continued fraction
converges to the Riesz—Herglotz—Nevanlinna transform of the measure and the
approximants interpolate this function in Hermite sense. This is the interpo-
lation problem that we alluded to. It is directly related to the algorithm of
Nevanlinna—Pick, which is a (rational) multipoint generalization of the Schur
algorithm that relates to the polynomial case.

A combination of the orthogonal rational functions and the associated func-
tions of the second kind give another solution of the recurrence relation called
the quasi-orthogonal or para-orthogonal functions in the boundary or nonbound-
ary case respectively. It can be arranged that these functions have simple zeros
that are on the real line or on the unit circle. These zeros are used as the nodes
of quadrature formulas. In the nonboundary case, such n-point quadrature for-
mulas are optimal in the sense that corresponding weights can be chosen in
such a way that the quadrature formulas have the largest possible domain of
validity. For the boundary case, these quadrature formulas are “nearly optimal”
in general. Their domain of validity has a dimension one less than the optimal
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one. However, when the zeros of the orthogonal rational functions themselves
happen to be a good choice, then the quadrature formula is really optimal. In
the polynomial case, this corresponds to Gaussian quadrature formulas on the
real line or Szeg6 quadrature formulas for the circle.

These quadrature formulas are an essential tool in the construction of a
solution of the moment problems. These moment problems are rational gen-
eralizations of the polynomial case that correspond to the Hamburger moment
problem in the case of the real line and the trigonometric moment problem in
the case of the circle.

Two other aspects are important or are at least closely connected to the
solution of these moment problems. First, there is the well-known fact that, as
n goes to 0o, the polynomial spaces P, become dense in the Hardy spaces H,,.
A similar result will only hold for the spaces £, under certain conditions for the
poles. Second, there is the general question of asymptotics for the orthogonal
rational functions, for the interpolants, for the quadrature formulas, etc., when
n tends to infinity. Such results were extensively studied in the polynomial case.
We shall devote a large chapter to their generalizations.

After this general introduction, let us have a look at the roots of this theory, at
the applications in which it was used, and let us have a closer look at the technical
difficulties that arise by lifting the polynomial to the rational case. Since the
central theme up to Chapter 10 is the generalization of results related to Szegd
polynomials, orthogonal on the unit circle, let us take these as a starting point.

The particularly rich and fascinating theory of polynomials orthogonal on the
unit circle needs no advertising. These polynomials are named after Szeg since
his pioneering work on them. His book on orthogonal polynomials [196] was
first published in 1939, but the ideas were already published in several papers in
the 1920s. The Szeg6 polynomials were studied by several authors. For example,
they play an important role in books by Geronimus [94], Freud [87], Grenander
and Szegd [102], and several more recent books on orthogonal polynomials.

It is also in SzegG’s book that the notion of a reproducing kemel is clearly
introduced. Later on these became a studied object of their own. The book by
Meschkowski [148] is a classic. In our exposition, reproducing kernels take a
rather important place and the Christoffel-Darboux summation formula, which
expresses the nth reproducing kernel in terms of the nth or (n + 1)st orthogonal
polynomials (in our case rational functions), is used again and again in many
places throughout our monograph.

Szeg6’s interest in polynomials orthogonal on the unit circle was inspired by
the investigation of the eigenvalue distribution of Toeplitz forms, an even older
subject related to coefficient problems as initiated by Carathéodory [48, 49]
and Carathéodory and Fejér [50] and further discussed by F. Riesz [184, 185],



