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Preface

The London Mathematical Society symposium on L-functions and Galois
representations took place at the University of Durham from the 19th to the
30th of July, 2004; this book is a collection of research articles in the areas
covered by the conference, in many cases written by the speakers or audience
members. There were series of lectures in each of the following subject areas:

Local Langlands programme

Local p-adic Galois representations
Modularity of Galois representations
Automorphic forms and Selmer groups
p-adic modular forms and eigenvarieties
The André-Oort conjecture

In practice it is becoming harder to distinguish some of these areas from
others, because of major recent progress, much of which is documented in
this volume. As well as these courses, there were 19 individual lectures. The
organisers would like to thank the lecturers, and especially those whom we
persuaded to contribute to this volume.

The symposium received generous financial support from both the EPSRC
and the London Mathematical Society. These symposia now command a cer-
tain reputation in the number theory community and the organisers found it
easy to attract many leading researchers to Durham; this would not have been
possible without the financial support given to us, and we would like to heartily
thank both organisations.

The conference could not possibly have taken place if it had not been for
the efforts of John Bolton, James Blowey and Rachel Duke of the Department
of Mathematics at the University of Durham, and for the hospitality of Grey
College. We are grateful to both these institutions for their help in making the
operation run so smoothly.
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X Preface

The feedback from the participants to the organisers seemed to indicate that
many participants found the symposium mathematically stimulating; and the
organisers can only hope that this volume serves a similar purpose.

David Burns
Kevin Buzzard
Jan Nekovar
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Introduction

Let E be an elliptic curve over Q attached to a newform f of weight two on
I'o (V). Let K be areal quadratic field, and let p| N be a prime of multiplicative
reduction for E which is inert in K, so that the p-adic completion K, of K is
the quadratic unramified extension of Q,,.

Subject to the condition that all the primes dividing M := N/p are split
in K, the article [Dar] proposes an analytic construction of “Stark—-Heegner
points” in E(K,), and conjectures that these points are defined over specific
class fields of K. More precisely, let

R:= {( Z Z ) € M (Z[1/p]) such that M divides c}

be an Eichler Z[1/p]-order of level M in M3(Q), and let I := R denote
the group of elements in R of determinant 1. This group acts by Mdbius
transformations on the K,-points of the p-adic upper half-plane

H,p = PH(K,) — P1(Q,),

1



2 Massimo Bertolini, Henri Darmon and Samit Dasgupta

and preserves the non-empty subset 7, N K. In [Dar], modular symbols
attached to f are used to define a map

& :T\(H, N K) — B(K,), (0.1)

whose image is conjectured to consist of points defined over ring class fields of
K. Underlying this conjecture is a more precise one, analogous to the classical
Shimura reciprocity law, which we now recall.

Given 7 € H, N K, the collection O, of matrices g € R satisfying

g(ﬁ{>:,\g<71->forsome/\g€K, 0.2)

is isomorphic to a Z[1/p]-order in K, via the map g +— A,. This order is
also equipped with the attendant ring homomorphism 7 : O, — Z/MZ
sending g to its upper left-hand entry (taken modulo M). The map 7 is some-
times referred to as the orientation at M attached to 7. Conversely, given any
Z[1/p]-order O of discriminant prime to M equipped with an orientation 7,
the set HS of 7 € H,, with associated oriented order equal to O is preserved
under the action of I', and the set of orbits I‘\Hz‘,9 is equipped with a natural
simply transitive action of the group G = Pic™(0), where Pic™ () denotes
the narrow Picard group of oriented projective O-modules of rank one. Denote
this action by (o,7) — 779, forc € G and T € F\Hg) . Class field theory
identifies G with the Galois group of the narrow ring class field of K attached
to O, denoted Hg. It is conjectured in [Dar] that the points ®(7) belong to
E(H) forall 7 € HS, and that

®(7)7 = ®(19), forallo € Gal(Hg/K) = Pic™(0). (0.3)
In particular it is expected that the point
Pr :=®(1q) + -+ ®(m1)

should belong to F(K'), where 74, . . ., 7, denote representatives for the distinct
orbits in I'\HS. The article [BD3] shows that the image of Px in E(K,) ® Q
is of the form ¢ - P g, where

(i) t belongs to Q*;

(i) Px € E(K) is of infinite order precisely when L'(E/K, 1) # 0;
provided the following ostensibly extraneous assumptions are satisfied

(i) Px = a,Pk, where Py is the Galois conjugate of Py over K, and

a,, is the pth Fourier coefficient of f.
(i) The elliptic curve F has at least two primes of multiplicative reduction.



Stark—Heegner points and special values 3

The main result of [BD3] falls short of being definitive because of these two
assumptions, and also because it only treats the image of Px modulo the
torsion subgroup of E(K,).

The main goal of this article is to examine certain “finer” invariants asso-
ciated to Px and to relate these to special values of L-series, guided by
the analogy between the point Px and classical Heegner points attached to
imaginary quadratic fields.

In setting the stage for the main formula, let £/Q be an elliptic curve of
conductor M it is essential to assume that all the primes dividing M are split
in K. This hypothesis is very similar to the one imposed in [GZ] when K is
imaginary quadratic, where it implies that L(E/K, 1) vanishes systematically
because the sign in its functional equation is —1. In the case where K is real
quadratic the “Gross-Zagier hypothesis” implies that the sign in the functional
equation for L(E /K, s) is 1 so that L(E /K, s) vanishes to even order and is
expected to be frequently non-zero at s = 1. Consistent with this expectation is
the fact that the Stark—Heegner construction is now unavailable, in the absence
of a prime p| M which is inert in K.

The main idea is to bring such a prime into the picture by “raising the level
at p” to produce a newform g of level N = Mp which is congruent to f. The
congruence is modulo an appropriate ideal A of the ring O, generated by the
Fourier coefficients of g. Let A, denote the abelian variety quotient of Jy (V)
attached to g by the Eichler-Shimura construction. The main objective, which
can now be stated more precisely, is to relate the local behaviour at p of the
Stark—Heegner points in A,(K,) to the algebraic part of the special value of
L(E/K, 1), taken modulo \.

The first key ingredient in establishing such a relationship is an extension of
the map @ of (0.1) to arbitrary eigenforms of weight 2 on I'o(Mp) such as g,
and not just eigenforms with rational Fourier coefficients attached to elliptic
curves, in a precise enough form so that phenomena related to congruences
between modular forms can be analyzed. Let T be the full algebra of Hecke
operators acting on the space of forms of weight two on I'g(Mp). The theory
presented in Section 1, based on the work of the third author [Das], produces
a torus T" over K, equipped with a natural T-action, whose character group
(tensored with C) is isomorphic as a T ® C-module to the space of weight 2
modular forms on I'o(Mp) which are new at p. It also builds a Hecke-stable
lattice L C T'(K,), and a map ® generalising (0.1)

®:T\(H, N K) — T(K,)/L. (0.4)

It is conjectured in Section 1 that the quotient 7'/ L is isomorphic to the rigid
analytic space associated to an abelian variety J defined over Q. A strong
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partial result in this direction is proven in [Das], where it is shown that 7'/ L is
isogenous over K, to the rigid analytic space associated to the p-new quotient
Jo(IN)P™¥ of the jacobian Jy (V). In Section 1, it is further conjectured that
the points ®(7) € J(K),) satisfy the same algebraicity properties as were
stated for the map ® of (0.1).

Letting ®,, denote the group of connected components in the Néron model
of J over the maximal unramified extension of Q,, one has a natural Hecke-
equivariant projection

8y : J(Cp) — @y, 0.5)

The group ®,, is described explicitly in Section 1, yielding a concrete descrip-
tion of the Hecke action on ®,, and a description of the primes dividing the
cardinality of ®,, in terms of “primes of fusion” between forms on I'g (M) and
forms on I'g(Mp) which are new at p.

This description also makes it possible to attach to F and K an explicit
element

E(E/K, 1)(17) & (i)p,
where <i>,, is a suitable f-isotypic quotient of ®,,. Thanks to a theorem of Popa

[Po], this element is closely related to the special value L(E/K,1), and, in
particular, one has the equivalence

L(E/K,1)=0 <= L(E/K,1)q) = 0forall p.

Section 2 contains an exposition of Popa’s formula.

Section 3 is devoted to a discussion of L(E/K, 1)(,): furthermore, by com-
bining the results of Sections 1 and 2, it proves the main theorem of this article,
an avatar of the Gross-Zagier formula which relates Stark—Heegner points to
special values of L-series.

Main Theorem. For all primes p which are inert in K,

ap(PK) = ‘C(E/K7 1)(]))-

Potential arithmetic applications of this theorem (conditional on the validity
of the deep conjectures of Section 1) are briefly discussed in Section 4.

Aknowledgements. It is a pleasure to thank the anonymous referee, for some
comments which led us to improve our exposition.
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1 Stark-Heegner points on J,(Mp)Pe¥

Heegner points on an elliptic curve E defined over Q can be defined analyti-
cally by certain complex line integrals involving the modular form

f = Z an(E)e27rinz
n=1

corresponding to F, and the Weierstrass parametrization of E. To be precise,
let T be any point of the complex upper half plane H := {z € C|Jz > 0}. The
complex number

Iz = /T 2mif(z)dz € C

oo

gives rise to an element of C/Ag = E(C), where Ag is the Néron lattice of
E, and hence to a complex point P, € E(C). If 7 also lies in an imaginary
quadratic subfield K of C, then P, is a Heegner point on E. The theory of
complex multiplication shows that this analytically defined point is actually
defined over an abelian extension of K, and it furthermore prescribes the action
of the Galois group of K on this point.

The Stark—Heegner points of [Dar], defined on elliptic curves over Q with
multiplicative reduction at p, are obtained by replacing complex integration on
‘H with a double integral on the product of a p-adic and a complex upper half
plane H, x H.

We now very briefly describe this construction. Let E be an elliptic curve
over Q of conductor N = Mp, with p 4 M. The differential w := 27if(2)dz
and its anti-holomorphic counterpart @ = —2wif(z)dz give rise to two
elements in the DeRham cohomology of Xo(N)(C):

wfi=wta.

To each of these differential forms is attached a modular symbol

mi{z -y} = (QF) ! /y wE,  forz,y € PH(Q).

z

Here QE is an appropriate complex period chosen so that mﬁ takes values in
Z and in no proper subgroup of Z.

The group I defined in the Introduction acts on P (Q,,) by Mébius transfor-
mations. For each pair of cusps z,y € P1(Q) and choice of sign +, a Z-valued
additive measure u*{z — y} on P*(Q,) can be defined by

x_”y_ly}a (11)

where - is an element of I'. Since the stabilizer of Z,, in I" is 'y (IV), equation
(1.1) is independent of the choice of v by the I'g(V)-invariance of m%. The

p{z — yy(vZp) = mp{y!
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motivation for this definition, and a proof that it extends to an additive measure
on P}(Q,), comes from “spreading out” the modular symbol m% along the
Bruhat-Tits tree of PGL2(Qj) (see [Dar], [Das], and Section 1.2 below). For
any 71,72 € Hpand z,y € P'(Q,), a multiplicative double integral on H, x H
is then defined by (multiplicatively) integrating the function (¢t — 71)/(t — 72)
over P1(Q,) with respect to the measure p*{z — y}:

T2 Y —
f o = f (t—”)dui{wayw)
nda Jrg,) \t— 7
+
trr — pH{z—y}U)
= lini H <tU_T2>
lull—=0 7o, \tv — 71

Here the limit is taken over uniformly finer disjoint covers U of P'(Q,) by
open compact subsets U, and ¢y is an arbitrarily chosen point of U. Choosing
special values for the limits of integration, in a manner motivated by the clas-
sical Heegner construction described above, one produces special elements in
C,. These elements are transferred to E' using Tate’s p-adic uniformization
C, /qe = E(C,) to define Stark-Heegner points.

In order to lift the Stark—Heegner points on E to the Jacobian Jy(IN)P"Y,
one can replace the modular symbols attached to E with the universal
modular symbol for I'o(N). In this section, we review this construction of
Stark—Heegner points on Jo(N)P™%, as described in fuller detail in [Das].

ecy. (12

1.1 The universal modular symbol for T'y(N)

The first step is to generalize the measures u*{z — y} on P}(Q,). As we will
see, the new measure naturally takes values in the p-new quotient of the homol-
ogy group H;(Xo(N),Z). Once this measure is defined, the construction of
Stark—Heegner points on Jo (V)P can proceed as the construction of Stark—
Heegner points on E given in [Dar]. The Stark—Heegner points on Jo (N )P
will map to those on E under the modular parametrization Jo(N)?P™V — E.

We begin by recalling the universal modular symbol for T'p(NV). Let M :=
Divo P! (Q) be the group of degree zero divisors on the set of cusps of the
complex upper half plane, defined by the exact sequence

0 —- M — DivP'(Q) —» Z — 0. (1.3)

The group T acts on M via its action on P! (Q) by Mébius transformations.
For any abelian group G, a G-valued modular symbol is a homomorphism
m : M — G; we write m{z — y} for m([z] — [y]). Let M(G) denote the



