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Preface

This book has evolved from over a quarter-century of research that concentrated on
delineating the aqueous coordination reactions that characterize the vanadium(V)
oxidation state. At the beginning of this time period, only a minor amount of research
was being done on vanadium aqueous chemistry. However, the basic tenets of >'V
NMR spectroscopy were being elaborated, and some of the influences of ligand
properties and coordination geometry on the NMR spectra were being ascertained.
The power of NMR spectroscopy for the study of vanadium speciation had been
recognized by only one or two laboratories. This would change, and the demonstra-
tion of the great value of this technique for determination of speciation, together
with the discovery that vanadium in the diet of rats could be used to ameliorate the
influence of diabetes, provided the impetus for rapid growth in this area of science.
The discovery of the vanadium-dependent haloperoxidases, the enzymes responsible
for a host of biological halogenation and oxidation reactions, added even more
impetus for understanding vanadium(V) chemistry, in particular that involving
hydrogen peroxide.

This book does not follow a chronological sequence but rather builds up in a
hierarchy of complexity. Some basic principles of >'V NMR spectroscopy are dis-
cussed; this is followed by a description of the self-condensation reactions of van-
adate itself. The reactions with simple monodentate ligands are then described, and
this proceeds to more complicated systems such as diols, -hydroxy acids, amino
acids, peptides, and so on. Aspects of this sequence are later revisited but with
interest now directed toward the influence of ligand electronic properties on coor-
dination and reactivity. The influences of ligands, particularly those of hydrogen
peroxide and hydroxyl amine, on heteroligand reactivity are compared and con-
trasted. There is a brief discussion of the vanadium-dependent haloperoxidases and
model systems. There is also some discussion of vanadium in the environment and
of some technological applications. Because vanadium pollution is inextricably
linked to vanadium(V) chemistry, some discussion of vanadium as a pollutant is
provided. This book provides only a very brief discussion of vanadium oxidation
states other than V(V) and also does not discuss vanadium redox activity, except in
a peripheral manner where required. It does, however, briefly cover the catalytic
reactions of peroxovanadates and haloperoxidases model compounds.

The book includes discussion of the vanadium haloperoxidases and the biological
and biochemical activities of vanadium(V), including potential pharmacological appli-
cations. The last chapters of the book step outside these boundaries by introducing
some aspects of the future of vanadium in nanotechnology, the recyclable redox battery,
and the silver/vanadium oxide battery. We enjoyed writing this book and can only
hope that it will prove to provide at least a modicum of value to the reader.
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Introduction

1.1 BACKGROUND

Vanadium is a widely dispersed element that is found in about 65 minerals and
generally occurs in low concentrations. Making up about 0.014% of the Earth’s
crust, it is the fifth-most abundant transition metal. It can be found in deposits with
ores of other metals, particularly with a titanium iron magnetite ore and with the
uranium ore, carnotite. Relatively high concentrations are found in certain oil and
coal deposits, and consequently, they present a significant pollution hazard when
such deposits are exploited. In particular, ash from gas- and oil-burning equipment
often contains more than 10% vanadium. It is also found at rather high concentrations
in some freshwaters and is listed as a metal of concern by the U.S. Environmental
Protection Agency. It is found in ocean waters at concentrations of about 30 nmol/L,
a value that varies considerably, dependent on region. Vanadium in the metallic state
is used, along with other metals, as an additive to iron to form various stainless
steels and is a component of some superconducting alloys. Also, it catalyzes the
disproportionation of CO to C and CO,. The vanadium oxide, V,0s, is a powerful
and versatile catalyst that is used extensively in industrial processes and finding
recent application in nanomaterials, whereas peroxovanadates are useful oxidants
often used in organic synthesis and found in naturally occurring enzymes, the
vanadium-dependent haloperoxidases.

The most common oxidation states of the metal are +2, +3, +4, and +5, although
oxidation states of +1, 0, and —1 are well known. The oxidation states +3 through
+5 can be maintained in aqueous solution, and these three oxidation states all have
known biological significance, even though the function might not be understood.

Until recently, probably the best understood oxidation state of vanadium was
V(IV). This situation changed with the advent of high field nuclear magnetic reso-
nance (NMR) spectrometers, which provided the means to obtain a detailed under-
standing of the V(V) oxidation state. Indeed, the past 2 decades have seen the
redrawing of the landscape of V(V) science, particularly where the aqueous phase
is involved.

Much of the recent impetus for the studies of vanadium(V) chemistry derives
from the fact that there is marked diversity in biochemical activity associated with
this oxidation state. Vanadium(V) occurs naturally in vanadium-dependent halo-
peroxidases, but beyond this, various complexes of V(V) have powerful influences,
inhibiting the function of a large range of enzymes and promoting the function of
others. Additionally, vanadium oxides have a marked insulin-mimetic or insulin-
enhancing effect in diabetic animals. Despite intensive investigation, the specific
function or functions of the metal that leads to this behavior are not known. A
great deal of research has gone into obtaining highly potent insulin-mimetic
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compounds. A number of compounds have essentially the same activity, and this
suggests the function is at a level not yet understood. It seems quite likely that
the insulin-mimetic effect derives from the simultaneous modification of the func-
tion of a number of enzymes and that the role of the ligands is to ensure vanadium
is transported effectively to the appropriate sites. The situation is somewhat dif-
ferent with peroxovanadates. These complexes are often exceedingly effective
insulin-mimetics, at least in cell cultures. They are good oxidizing agents and
function by means of an oxidative mechanism. However, unless selectivity of
function can be built into them, they will probably not achieve success in animal
models.

The potentially serious aspects of vanadium pollution, the function of biologi-
cally occurring enzyme systems, the role of vanadium on the function of numerous
enzymes, and the associated role in the insulin-mimetic vanadium compounds are
inextricably linked. The key to our understanding all such functionality relies on
understanding the basic chemistry that underlies it. This chemistry is determined to
a significant extent by the V(IV) and V(V) oxidation states but clearly is not restricted
to these states. Indeed, the redox interplay between the vanadium oxidation states
can be a critical aspect of the biological functionality of vanadium, particularly in
enzymes such as the vanadium-dependent nitrogenases, where redox reactions are
the basis of the enzyme functionality.

1.1.1 VaNaDpium(V)

The V(V) oxidation state is the major focus of this book, which concentrates par-
ticularly on the aqueous chemistry of the V(V) oxoanion, vanadate, but also describes
applications in biochemistry, pharmacology, and technology. The chemistry
described includes the self-condensation reactions of vanadate and its reactions with
a number of mono- and oligodentate ligands and the associated coordination geom-
etries. Mixed ligand chemistry is of particular interest and is an integral part of this
discussion. Various aspects of the coordination chemistry are then drawn together,
and it is shown that electron-donating properties of ligands have a significant and
systematic influence on vanadium coordination and reactivity. Vanadium in its higher
oxidation states has a significant effect on numerous biological processes and has
various biological, nutritional, and pharmacological influences, including potential
applications in treating diabetes and cancer. Possible mechanisms leading to this
behavior are described. The vanadium-dependent haloperoxidases are briefly dis-
cussed, and model compounds that mimic some of the functionality of these enzymes
are described. Also covered is the distribution of vanadium in the biosphere and its
occurrence in terrestrial and marine organisms.

Developing technologies in vanadium science provide the basis for the last two
chapters of this book. Vanadium(V) in various forms of polymeric vanadium pen-
toxide is showing great promise in nanomaterial research. This area of research is
in its infancy, but already potential applications have been identified. Vanadium-
based redox batteries have been developed and are finding their way into both large-
and small-scale applications. Lithium/silver vanadium oxide batteries for implant-
able devices have important medical applications.
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1.1.2 Vanabium(ll), (I11), anp (1V)

The V), V(III), and V(IV) vanadium oxidation states are not discussed in detail
in this book. These oxidation states have an important and well-developed chem-
istry, and additionally, all have biological significance. Perhaps the most widely
recognized function associated with these oxidation states is the accumulation of
vanadium by ascidians where vanadium, in its V(V) oxidation state, is enriched
by means of a reductive mechanism by a factor of six orders of magnitude from
its concentration in seawater and incorporated as V(III) into modified blood cells
called vanadocytes. There are extensive research programs directed toward under-
standing the biochemistry and biological significance of V(III) both in the marine
tunicates [1-3] and the polychaete worms [4]. The most important biochemical
role of these oxidation states may lie in their utilization in nitrogen-fixing enzymes.
Both the V(III) and V(II) oxidation states have a critical function in the redox
cycling of the vanadium-dependent nitrogenases. These serve as alternative nitro-
gen-fixing enzymes to the more prevalent molybdenum-based systems. These
nitrogenases function in situations where molybdenum is deficient, but even more
importantly, they are more efficient than the molybdenum enzyme when the
ambient temperature is significantly reduced [5,6]. It seems likely that they play
an important role in arctic and alpine environments.

The V?* (aq) oxidation state is not stable in aqueous solution. The redox potential
of VZ* (aq) is such that hydrogen ions will be reduced to hydrogen and V3*(aq)
formed. However, under reducing conditions, the V(II) state can be maintained. The
aqua V?* jon is octahedrally coordinated with six water ligands, and octahedral
coordination is characteristic of this oxidation state. The nitrogen functionality, as
found, for instance, in diamines [7] and pyridines [8], provides a good ligating center
and serves well as a functional group in multidentate ligands. Up to four pyridines
can be complexed to a V(II) center. The complexation of pyridine is stepwise and
quite favorable. One molar equivalent of pyridine reacts with vanadium(II) in aque-
ous solution, with a formation constant of 11 M~' [8]. This compares with a very
weak interaction with V(V), where a bispyridine complex is observable only under
high pyridine concentrations [9].

Unlike V(II), both the V(III) and V(IV) oxidation states are stable in water.
However, neither the V(III) nor the V(IV) oxidation states are easily maintained in
the presence of oxygen if the pH is neutral or above, although, under acidic condi-
tions, both these states are rather easily maintained. Somewhat surprisingly, the
V(V) species is more readily oxidized by O, than is the V(III) species. In aqueous
acidic solution, the vanadium(III) ion exists as a hexaqua octahedral complex that
can deprotonate to form the 2+ and 1+ species, dependent on pH. Additionally, di,
tri and tetra polymeric forms are known. Structures have been proposed and their
formation constants determined [10]. The occurrence of the various polymeric forms
in the presence of sulfate has also been described and is particularly relevant to
concentration of vanadium by bioaccumulators [10].

Complexes of vanadium(IIl) typically have octahedral coordination, though
other coordinations are certainly not unusual, particularly with bulky ligands where
trigonal bipyramidal coordination is adopted. Nitrogen- and oxygen-containing mul-
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tidentate ligands such as aminopolycarboxylates are common ligands that strongly
complex V(III) [11]. Complexes of such ligands are generally monomeric, but with
some ligands of appropriate structure, dimeric structures are formed. Dimerization
is known to occur through oxygen to give oxo-bridged dimers. However, with
appropriate tridentate ligands containing an alkoxo ligating group, dimerization can
occur through two bridging alkoxo oxygens to give a cyclic [VO], core. Sulfur-
containing ligands are well known to be complexed by vanadium(III). Thiolates, for
instance, are good complexation agents [12,13], whereas vanadium(III)-sulfide poly-
mers are formed during the desulfurization of crude oils.

Sulfate itself complexes V(III) and, together with appropriate V(III) ligands such
as oxalate, can form crystalline V(III)-sulfate polymers, where the sulfate acts as a
bidentate bridging ligand [11]. Although the polymer dissociates in solution to
predominantly give the bisoxalato V(III) complex, some sulfate complexes still
occur. With ligands other than oxalate, such as with aminopyridines, sulfate com-
plexation is much more highly favored, and it may complex either in monodentate
or bidentate fashion. Vanadium is also locked into the catalytic site of the vanadium
nitrogenases by iron/sulfur bonds, where V(III) is involved in the redox cycle of this
enzyme. There is considerable electron delocalization within [VFe,S,]?* clusters,
which makes it difficult to definitively assign the vanadium oxidation state. It is,
however, most consistent with the V(III) state [14]. Unlike the V(IV) and V(V)
oxidation states, strong Voxo bonds do not dominate the aqueous chemistry of V(III).

Aqua vanadium(IV), like its counterparts V(III) and V(V), exists in various ionic
states dependent on the pH, including VO(H,0)>*, VO(OH)(H,0),*, and the dimer,
(VOOH),(H,0),%. In these cationic forms, which occur under acidic conditions,
V(V) is highly water soluble. However, under mildly acidic conditions, about pH
4, where it is largely non-ionic, it forms a hydrous oxide VO,7nH,0 (K,, = 10-22)
that is very insoluble and precipitates from solution, thus limiting the solution
concentrations to low values. It has, however, been suggested that V,0, is even more
insoluble [15]. Under basic conditions, the oxide can be redissolved to form the
anionic species, VO(OH),. Apparently, this compound is electron paramagnetic
resonance (EPR) silent, which suggests it is at least a dimeric material.

The VO?* moiety is critically important to the chemistry of vanadium(IV). The
V=0 bond is strong, typically having a bond length of about 1.6 A, a value similar
to that found in the V(V) oxide. Vanadium(IV) does not readily relinquish the bond
to oxygen, and the strength of this bond has a direct bearing on heteroligand
coordination. It has a strong influence on the position of attachment of ligating
groups and consequently on ligand orientation within V(IV) complexes. Square
pyramidal complexation is a favored coordination mode, with the VO bond projecting
vertical to the plane of the remaining coordinating atoms. The open position opposite
the VO bond provides a site for complexation by strongly complexing ligands so
that six-coordinate species can form.

Mono-, di-, tri-, and tetradentate ligands of various types readily form complexes
with VO?*. Typical ligating functional groups are O, N, and S, so it is not surprising
that this oxidation state of vanadium has been found to have a strong influence in
biochemical systems. Such biochemically relevant ligands as oxidized and reduced
glutathione, ascorbic acid, nucleotides, and monosaccharides are all good complex-



