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Preface

One of the paradoxes of modern physics is that its two main
theories - relativity and quantum mechanics - have never been
properly reconciled. It is true that the union of sBecial
relativity and quantum mechanics has led to some spectacular
successes, both qualitative and quantitative (for instance, the
Dirac equation, the existence of antiparticles, the connexion
between spin and statistics, the TCP theorem and the detailed
agreement of quantum electrodynamics with experiment). Never-
theless, because of its divergences, the relativistic quantum
theory of realistic interacting fields is not yet satisfactory,
even in those cases when the theory is renormalisable.

When we go further, and attempt to reconcile general rela-
tivity with quantum mechanics, the situation becomes considerably
more serious. These two theories are conceptually and struc-
turally very different, and this has led to the development of
many apparently disparate approaches to their reconciliation. It
has even led some physicists to doubt whether such reconciliation
is needed at all (what God hath not joined no physicist can, to
adapt a remark of Pauli's).

However, we firmly believe that not only is there a problem
waiting here to be solved, but that its eventual solution will
represent a major advance in physical understanding. Several con-
siderations underly our belief. In particular, there is the
intuition that the whole of physics should be described by a

single fundamental theory. Quantum physics and gravity are, after



all, both constituents of one and the same physical world. The
very fact that they are at present described by theories so
different from one another is an indication of how much is poten-
tially to be learned by attempting to bring the two together. It
is clear that there is much in the workings of Nature that is at
present only remotely gleaned. A possible route to obtaining the
new insights that are required would seem to be the encompassing

of known phenomena of quantum physics and gravity into one coherent
scheme.

One possible link-up is suggested by the success of recent
unified gauge theories in particle physics, general relativity
being commonly regarded as the gauge theory par excellence. Yet
again, there is the possibility, as has many times been suggested,
that gravity might supply the short-distance cut-off which could
remove the divergences in quantum field theory and thereby assign
(finite) numerical values to the renormalization constants (for
example by providing a relation between the fine structure constant
and the gravitational constant).

At the other end of the scale is the fact that progress in
astrophysics and cosmology is now being held up by the absence of
an adequate quantum theory of gravity. We have in mind the
situation in the early superdense stages of the universe, and at
the end point of catastrophic stellar collapse, when classical
general relativity implies that physical space-time singularities
must occur, singularities whose structure (and perhaps also whose
very existence) would be decisively influenced by quantum effects.
We have in mind also the black hole explosions envisaged by Stephen
Hawking. In their case a possible astrophysical phenomenon of

importance needs for its study an understanding at least of quantum



effects (such as pair production) in a classical curved background
spacetime, and perhaps also of the full quantum theory of gravity.

For these reasons, and because of the recent progress that
has been made in understanding quantum gravity, we decided to
organise a Symposium to help take stock of the present position,
and to suggest guidelines for future research. This Symposium was
held at the Rutherford Laboratory on February 15-16 1974, and we are
very grateful to the Director, Dr. Godfrey Stafford, and also to
Professor Douglas Allen, for providing such excellent facilities,
and for ensuring the smooth-running of all the arrangements.

We were pleasantly surprised by the numbers attending what
might have seemed an esoteric meeting - well over a hundred
physicists took part. The formal sessions were mainly devoted to
survey talks, with one or two individual topics added, and a
substantial time was allowed for discussion.

It had not been our original intention to publish any
proceedings of the Symposium. However, many of the participants
emphasised to us that the existing survey literature on recent
developments is rather sparse, and that a permanent record of
the Symposium might be found widely useful. The speakers readily
agreed to provide written versions of their talks, and the Oxford
University Press to publish them. Accordingly we present now the
state of the art in quantum gravity, as our Symposium saw it in
early 1974. May its publication stimulate further theoretical
work which soon renders it obsolete, and may it help also to

foster closer links with both astrophysics and cosmology.

C. J. Isham
R. Penrose
D. W. Sciama
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L
AN INTRODUCTION TO QUANTUM GRAVITY

C.J. Isham*

0. PREFACE

The purpose of my talk at the Oxford Conference was to provide a
general introduction to some of the ideas and methods of quantum gravity
as a precursor to the rather technical lectures which followed. This is
reflected in these lecture notes which are concerned mainly with broad
attitudes rather than with specific, up to date, technical tools. The
scheme of the paper is as follows. The first section is a short
introduction which emphasises the dual particle/field interpretation of
conventional quantum field theory. The latter interpretation is used
extensively in quantum gravity and, because of its relative unfamiliarity,
is the subject of repeated discussion throughout these notes. The next
two sections deal with the problem of defining a quantised field on an
unquantised gravitational background. There has recently been
considerable investigation on this topic (which is a preliminary to
quantum gravity proper) and it promises to be of some relevance to
astrophysical problems involving gravitational collapse (see the chapter
by S. Hawking). The fourth section is concerned with covariant
quantisation (see the chapter by M. Duff) while in the next two sections
canonical quantisation is discussed in some technical detail since this
was not the subject of any other specific lecture at the conference.

The final section considers the currently popular quantum model/quantum
cosmology approach to quantising the gravitational field, although

again since a lecture was devoted to this topic (see the chapter by

* 1 am grateful to NATO for their support by NATO Research Grant No.815.



M.MacCallum) the treatment here is concerned with the general ideas

rather than with specific details.
1 INTRODUCTION

The problem of quantising the gravitational field has exercised
the minds of a number of people over the last forty years and will

y(l)(Z)(3)(")(5)(6)‘

doubtless continue to do so for the next fort The
importance and interest of this subject of study, which is reflected in
the very considerable increase in attention which it has received during
the last decade, derive from a number of different sources. General
relativity and quantum theory are without doubt two of the greatest
intellectual achievements of this century. This is in itself sufficient
to guarantee a continued interest in the problem of unifying thexr; an
interest which is heightened by consideration of the very special role
played by general relativity within the framework of classical (viz.
non-quantum) physics. In any cconventional field theory the space—time
structure is fixed and the field propagates in time on this background.
In general relativity however the kinematical and dynamical aspects of
the theory are tightly interlaced through the medium of the gravitational
field, which, on the one hand, specifies the geometrical properties of
space—time, and on the other fulfills the classical task of a field by
propagating a physical force. Conventional quantum theory, however, is
formulated on a rigidly fixed space-time background, Euclidean three-
space in the case of non relativistic quantum mechanics and Minkowskian
space—time in the case of relativistic quantum field theory. From this
viewpoint it can be expected that any attempt to unify general relativity

and quantum mechanics will inevitably lead to technical and conceptual



problems. One of the main motivetions for studying quantum gravity has
always been that the resolution of these problems will lead to a
fundamentally new insight into physics.

It is not a priori clear precisely what would be regarded as a
quantisation of general relativity. The mathematical structure of the
classical theory contains a number of features any of which might
perhaps be expected to become subject to quantum laws. The primordial
concept is that of a point set whose mathematical points are to be
related in some way with physical space—-time events. This set is then
equipped with a topology and then with a differentiable structure which
makes it into a four—dimensional manifold. Finally a metric tensor is
constructed on this manifold in such a way as to satisfy the Einstein
equations. One might attempt to introduce quantisation at any one of
these levels. In practice most of the work which has been done tezkes
the easiest route and fixes everything but the metric. Thus a
differentiable manifold is specified once and for all and the metric
tensor is regarded as an operator defined on this space. (Actually if
canonical quantisation is being used then the relevant manifold may be
three, rather than four, dimensional). This is clearly the attitude to
quantisation which is closest to that prevalent in conventional quantum
field theories. Nevertheless when one considers the role played by the
lightcone structure in these theories it is clear that already a major
difference has emerged — the lightcone structure of general relativity
is indisputably dynamical and not part of the fixed background.

However, the opinion is frequently voiced that the quantisation

procedure should tske place at a more fundamental level. Two of the



principal advocates of this line have been Professors J. Wheeler and

R. Penrose. Wheeler has for many years emphasised the need to quantise
the topological as well as the metric structure of space—time and, with
his recent thoughts on the role played by formal logic in quantum
gravity, has teken the quantisation level right back to the basic
elements of mathematics. Similarly Penrose has frequently argued that
space—time itself, rather than just the metric field, should be
intimately linked with quantum theory. It was this point of view which

(7)

partly motivated his combinatorial spin network theory as well sas
his recent work on twistors(e). Most people would agree that a deeper
look at the problem of quantum gravity at this type of very basic level
is probably mandatory if any really major advence is to be achieved.
However, it is also important to understand how far conventional
quantisation (by which is meant metric field quantisation) can be pushed.
In particular, it is essential to distinguish carefully between those
problems which are peculiar to quantum gravity and those which are shared
by all quantum field theories. Hand in glove with this must go an
appreciation of the practical applications of this type of quantisation
and their implications for realistic physical systems. In this article
I shall concentrate mainly on the metric gquantisation schemes and refer
the reader to the bibliography for material on some of the other aspects
of quantum gravity.

Many different approaches to quantising the gravitational field
have evolved since the subject was first considered in the early 1930's.
These tend to be classified under two headings, 'covariant' (84) and

'canonical' (85, §6). These titles can, from a technical standpoint, be



8 little misleading but since they are widely used they will be retained
here. Canonical quantisation itself will be split up into 'true'
canonical quantisation (55) and superspace—based quantisation (§6).

There is a tendency, at least among particle physicists, to suppose that
the whole of quantum gravity can be neatly accommodated by the notion of
the graviton. This helicity two, massless particle is then thought of
as interacting with itself in a way which is more or less conventional
although it leads to a theory which is probably highly nonrenormalisable.
This is the principle concept which arises from the covariant quantisation
scheme but it leads to a rather restricted view of quantum gravity and
indeed of quantum field theory in general.

The particle interpretation, with its corresponding set of particle-
based observables, of a quantum field theory, which the notion of a
graviton epitomises, may not always be the most appropriate one. There
is in fact an important alternative physical interpretation of what is
essentially the seme mathematics, even in the case of an ordinary flat-
space quantum field theory. As this alternative view is the one which
is most commonly used in quantum gravity (mainly in the canonical
approaches) it is worth discussing it here, at least in a heuristic
manner. For the sake of simplicity consider a free neutral scalar field
¢(x) in ordinary flat Minkowski space-time. The conventional
quantisation of this system using Fock space, with the corresponding
particle interpretation, is well known (see §2 for more details). On
the one hand it can be obtained by quantising the scalar field ¢(x) per
se and looking for & suitable representation (in the Schrodinger picture

say) of the canonical commutation relations
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lo(x), n(y)] =iH 5(3)(5 -y . (1.1)

On the other hand one can begin with one-particle states, two—particle
states etc. described in terms of ordinary quantum mechanics and construct
a large state-space which accommodates them all, namely Fock space.
'Annihilation' and 'creation' operators can then be defined which connect
together these various finite particle subspaces and from which a quantum
field &(x) can be reconstructed. However, it is interesting to ask how
this simple problem of quantising a free field looks from the viewpoint
of conventional quantum mechanics. If a classical system has a
Euclidean configuration space Q with global cartesian coordinates ql...qn
corresponding to n degrees of freedom, then the basic problem of gquantum
theory (in the Schrodinger picture) is to find a representation of the

canonical commutation relations

[&i ,pj]=i1’x§ij i,j =1...n

[o; »q] =0 (1.2)

[5y » 53]

]
o

with self-adjoint operators on a Hilbert space of states. Then the
dynamical equation

. 3,

H(ql,qz---qn 3 Pl’Pz"'Pn) wt =i (1.3)

must be solved for the time evolution of the state vector wt in terms

of the quantised Hamiltonian operator H.



By virtue of the Stone-Von Neumenn theorem, the unique solution
(up to unitary transformations) is that in which the state space is the

set of all complex valued functions of Q which are square integrable with

respect to the Lebesgue measure clq1 dqz...dqn. The operators qi, pj are

then represented by

(a; ) (q-veq) = q; w(ql---qn) (1.4)
(b5 W) (q,-e0q,) == i ¥ g—g: (a . -q,) (1.5)

and any other representation of egn (1.2) (or more precisely of the
exponentiated Weyl form) is unitarily equivalent to this one. The wave

function has the interpretation that if B is any Borel set in [Rn then

Py = JB |11)(ql...qu)|2 dql...dqn (1.6)

is the probability that if the system is in the state Y and a
measurement is made on the system of the values of q q~n (i.e. of the
1

classical configuration of the system) then they lie in B. Now a

classical field theory can be regarded as a classical mechanical system
with infinitely many degrees of freedom. Essentially, an orthonormal

basis set of functions on R 3, {ei(z)} say, is chosen (typically with
properties in relation to the Hamiltonian which simplify the dynamical

evolution problem) and the fields are expanded as

q. (t) e.(x) (1.7)

#(x,t) = 5 :

e~ 8

i=1



