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ADVANCES IN INTERFEROMETRIC SIGNAL ANALYSIS

S. A. Eselun and E. G. Wolff
Aerospace Corporation
El Segundo, California

ABSTRACT

Developments in phase modulation and related
signal processing were applied to an automatic,
real time system for monitoring two beam inter-
ference patterns.

INTRODUCTION

Analysis of optical interference patterns is a
major task in such diverse fields as astronomy,
metrology, vibration analysis, microscopy,
shock wave research, optical fabrication and
communications, and dimensional stability of
materials, components and structures. Demands
of improved resolution (e.g. < A /1000), relia-
bility and versatility lead to required signal
analysis systems incorporating simultaneously,
real time automated data output in digital and/or
analog form, computer interfaces, bidirectional
counting and fringe interpolation, fast response,
and long term stability in terms of insensitivity to
changes in optical alignments or transmission
characteristics. In order to maintain reasonable
cost it is desirable to accomplish the above with a
low number of (standard) components.

The present paper describes a system suitable
for the continuous measurement of a Michelson
interference pattern. The automatic counting of
Fabry-Perot type fringes is also possible. It is
in part a homodyne technique as opposed to th?1 2
generally more complex heterodyne methods. "’ )
It has been recognized(3) that phase modulation is
one of the best approacheég to automatic fringe
counting. Indeed, directional fringe motion may
be found from the integrated intensity as received
by a single photodetector if the interference
pattern is phase modulated. Detection of poor
quality (low visibility) fringes is thereby possible
with no dependence on polarization states. This
is achieved by obtaining two electrical signals
which are always 90° out of phase. These
signals can be reliably counted with standard
quadrature counters, and interpolations can be
made. Extensions of this approach are best
shown by reviewing the basic theory.

PHASE MODULATION OF INTERFEROMETER

The intensity from a Michelson interferometer
(see Figure 1) is proportional to (1 + cos 8) where
6 is the phase difference between the two inter-
fering beams,

5 - ATLVY
[od

L is the optical path length difference
Vis the frequency of the light
c is the speed of light

If, however, one collects with a lens the entire
interference field, the sinusoidal relation is
preserved; and in general the intensity, I, may be
expressed as

I=1, +1I

de S 6 (2a)

With fringe visibility Bdefined as Iac /Idc’

I=1I, (1l +Bcosb) (2b)

dc

Ignoring for now the DC intensity the output
voltage from a photodetector will be

¥ = % cos 6 (3)

One is interested in measuring § and counting

the number of intervening cycles at different
times to get difference measurements. The
counting may be achieved by generating sine/
cosine signals which drive directional A quad B
type counters. (Two techniques for further inter-
polation are discussed later). If, as mentioned,
the phase is modulated by an amount, ¢, and at
frequency, Wm » then Eqn.(3) becomes essentially
(Appendix I);

vV = Vocos(ﬁo + @ sin wmt) (4)

where 8 is the static phase. When written in
terms ol Bessel functions of the first kind,



o0
V= VOJO(¢ Jcos 50 + ZVOZ[JZn(¢)cos 50c052n a.)mt
n=1
-Jzn_1(¢)sin5osin(2n-l)wmt] (5)

It is apparent that the quadrature signals exist in
the even and odd harmonics. From Eqn. (5) the
first term is used as the cosine signal; it is
effectively DC. The sine signal is found by using
a lock-in detector tuned to the in phase part of

w ,n= l. We now have the desired signals:

v
X

VOJO (®) cos 50 (6a)

v
y

"

-2V0J1(¢) sin 50 (6Db)

Figure 2 shows Jo(¢) and 2J1(¢); with no electronic
manipulation equations (6) represent a circle
when ¢ is chosen to satisfy the transcendental
equation Jo(¢) = 2J,(#). The first solution is
®=.896, J (9 =.8l. In practice, however, such
a high degree of modulation is unnecessary as

Vyx and V,, may be adjusted to equal amplitudes
electronically. For small values of g, J (P)=1
and J(¢) = /2, so that equations (6a) and (6b)

become the original signal and its first derivative:

Vyx = V cos 50 (7a)

V. = -¢V sinb (7b)
y o o

The necessary signals are achieved by amplifying
Vy by an amount ¢~ *,

Phase modulation may be obtained by any of three
different methods. There are 1) retardation of
one of the combined light beams with,e. g.,an
electro-optic modulator or mobile grating, (5)
2) oscillation of a refelren%% mirror by, e.g., a
piezoelectric crystal( »3:0) or 3) frequency
modulation of the light beam.

As seen from Egn. (1), there are two basic ways
one may oscillate 0, to obtain the phase modula-
tion index, @, namely, variation of L or V.

There are also two ways one may vary L. One of

these is to introduce an electro-optic modulator (4)

in one of the combined light beams. The device

is driven by a voltage, Vd, so that
TTUOK

¢ = p Vd (8)

where K represents crystal parameters. This
produces a change in the refractive index and
therefore in L also.

Another method is to change the geometrical
path by vibrating a mirror somewhere in the
interferometer with a piezoelectric crystal. If
the path is changed, by a peak amount, £

4771/0
¢ = L (9)

C

Frequency modulation is discussed in the next
section and in the appendix, but if the input
light beam undergoes a peak frequency deviation,
Vps then

v (10)

It is possible that all of these could be occurring
simultaneously and at different modulation
frequencies in which case Eqgn. (5), if expanded,
would be more complex. However, if not
expanded, one may consider the highest frequency
as Wy, , and then choose the corresponding @,
whether from equation (8), (9), or (10). The
quantity 50 is time varying, and is followed by
the signal processing. If all three methods were
to occur at the same frequency and phase, then @
would be the sum of Equations (8), (9), and (10).

Each of these three methods has both advantages
and disadvantages. For example, use of an
electro-optic crystal in the beam path permits
both mirrors (M}, and M, Figure 1) to be used
as the reflective ends of a test sample for
contactless length measurement. However, the
size of the device can sometimes make it
impractical, Vibration of a mirror offers low
cost and simplicity but raises the question of long
term stability of the oscillating system or creep
of the mirror-%:iezoelectric crystal interface. A
mobile grating 5) is similarly subject to move-
ment mechanism errors and also grating imper-
fections; however, it is insensitive to errors of
alignment. The third method has not been widely
attempted and is discussed separately.

FREQUENCY MODULATION BEFORE BEAM
SPLITTING

Frequency modulation of the beam prior to beam
splitting can also be used as a phase modulation
technique (see Appendix I). In spite of similarities
to Fabry-P%rot work, which involves am{)litude
modulation( ), and heterodyne methods,( »2) it
does not appear to have been used widely. It has
been accomplished in our laboratory through the
use of a Lamb dip frequency stabilized laser. The
laser output mirror is mounted on the resonator
housing via a piezoelectric crystal. A small
amount of energy is allowed to pass through the
rear reflector to a phototransistor, serving as the
sensing element in the frequency stabilization loop.
The processed phototransistor output is utilized
as the error signal which maintains the cavity
length by varying the length of the piezoelectric
element. This approach has involved a 12,5 KHz
signal as part of the control voltage to the output
mirror crystal resulting in a frequency modulated
output beam. As long as L #0, the phase
difference of an interferometer will be modulated,
(Egn. (10)). Measurements of @ indicate that

v_ = 1IMHz. This modulation has been found to
w%rk well with the signal processing system
described in the next section. Figure 3 shows the
change in refractive index as a vacuum system is
pumped down from 760 to 10-3 TORR using this
technique.



SIGNAL PROCESSING SYSTEM

Figure 4 shows schematically an interferometer
system which we have used to measure dimen-
sional changes in materials. Figure 5 illustrates
the associated electronics. Phase modulation is
induced by the mirror, M3, driven at one of its
resonances near 50 KHz. The polarizer and
quarter wave retardation plates and the s/p beam
splitter are used to obtain I' as well as to act as
source isolation. The lock-in detector used was
an Evans Associate Model 4110, especially
modified to provide adequate frequency response.

The optical parameters Ig. and I in Equation 2
may change during the course of an experiment.
For example, oil or metallic films collecting on
a vacuum window which transmits the ingoing and
detected beams will cause a decrease in Ig..
Similarly, changes in reflectivity of the mirrors,
M; and M;, will change I,. as will slight
rotations.

To compensate automatically for Iy., it must be
measured. This is done by introducing a second
photodetector, B, which detects fringes, I', of
equal visibility but shifted in phase by T with
respect to those seen at photodetector A:

I' =1,.01 - Bcos 6) (11)

d

In converting the intensities, I and I', to voltages,
V and V', variable gains, G and G', are available.
Equations (2b) and (11) become

vV = GI4. (1 + Bcosb) (12a)

v o= G'I‘dc(l - Bcosd) (12b)

These voltages are subtracted, and the gains are
adjusted so that GIdc = G'I’dc, and

V-V = ZGIaC cos 6 (13)

This signal, equal in form to Equation (3), there-
fore meets the requirement of being independent
of Lic and I'dc'

Its complement is found as outlined yielding the
signals, V_ and V_. The idea is to normalize
these signaﬁs so tHat the strength of I_  becomes
unimportant. This is accomplished with circuitry
which for two inputs, Vy and Vy, gives as an
output

_ 2, J2.-1/2
Vo= Ve (vi v (14a)
Vi o= v (vE4v2)l/2 (14b)
y ~ ylx Ty

1
With the sine /cosine form of the input signals vV, and
V|, will be normalized to unity. In practice, about
96’0 of the original light source may be blocked
out with no effect on these signals and, hence,
measurement capability,

FRINGE INTERPOLATION

At least two techniques which use the sine/cosine
signals, Eqn. (6), are available for interpolation
between counts. One method is to use voltage
multiulifrs on the original signals to find sinScosb
and cos“8. These are equivalent to sin28

and cos 28, Several stages, n, will continue
doubling the phase so that the final signals are
counted as before, but this time with the sensi-
tivity increased to A/2P +3, This approach has
the benefit of keeping the information digital.

Rectangular to polar conversion is considered
preferable. This may be done with available
integrated circuits or with a mini-computer.

CONCLUDING REMARKS

The processing of phase modulated signals as
outlined here has numerous advantages. The
fringe counting is reliable and the signals are
easily used in feedback loops. Linear displace-
ments, for example, can be followed from the
angstrom range to the coherence length of the
light source. The cost of the electronics com-
ponents (about $2000) is mainly determined by the
digital counter. This system can also provide
digital counting of multiple beam interference
patterns. This is seen by considering that when
the sine/cosine signals in a two beam interference
pattern are displayed on two axes of an oscillo-
scope, there is a circle for one complete cycle of
6,. Applying the same procedure to Fabry-Perot
transmission fringes using small oscillations, the
display would appear as in Figure 6.
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APPENDIX I. VALIDITY OF EQUATION (4)
WHEN SOURCE IS FREQUENCY MODULATED

There may be a concern in going from Equation
(3) to Equation (4). The general form of the
intensity, 1 + cos 0, is normally obtained from
time averages of the square of the electric field.
We have imposed a time variation on Y, and there-
by 6, and have used this value for finding cos 6,
Eq. (5). This process would seem valid as long
as Wy < wo(l), In this section the validity of

this process is investigated.

A polarized plane wave with an electric field given
by E, sin wt is added to another, Eg sinw(t-t'),
where t' is the time of flight difference, 2L/c, in
the arms of the interferometer. The intensity
may be denoted

2

1= Io[sinza)t(1+coswt')2 + coszwtsin wt'

- 2sinWtcosWtsinwt' (1 +coswt')] (Al)

When w# f(t), the time average extends over about
2 x 10-15 sec for a He-Ne laser and (Al) becomes

I =1 (1 +4+cosw t')
(o) o

which is the standard form wgt' = 8,. (If L = 10

cm, then t'~ 1077 sec).

The purpose here is to tigle average quantities
from (Al) like sinwt cos® wt! when w = w, +

w_ sin wpt. The time averages need only be
extended from vV ~" to (Y5 + V)" which is trivial
for laser applications since Vg is always much
less than Vg, We now haxzr%

w
W sinzwt coszwt‘ dt

2 2
i wt! = ——
sin Wtcos t 7 A

Integration by parts gives

1
1—coszu.)i:' + £

3 1
> > sin 2 wt' dw

but dw = wp W, cos (Jmt dt so that this becomes
27

1 2 w wmt' W

> cos wt' + —LZ— sin 2 wt' cos wmt dt (A2)

o
If the second term is zero, one has the usual

average. Now w_, is much smaller than @ so
that to first order cos wnt changes very little

from unity over the time of integration. Likewise
wt' is approximated by w t' + wpwmt't and (A2) is

2m
w
1
lcoszmt' +ﬁ sinw t' cosw_w. t't dt +
2 2 o Pm

o

ar
cos w tfwsinw w_t't dt
o P m
o

Again to first order, the second integral is zero
and the first is 2m/w, so that

2 z 1 2 T et
sin Wtcos wt' = 5 cos wt' + + sin 6 -
o

Other required averages to the same approxima-
tion:

> 2TwW w  t!
2cos Wt'sin“wt = coswt' + —E T 4in$
W, o
; 1
sin wt = >
(1 + coswt')sinWtcoswWtsinwt' = 0

If one then uses 6 as given in Equation (4), cos 8
is off by

anpwmt'
o sin 60
o
We have used a system with v _ = I\IIIHz,_ v =
12.5 KHz, t' = 6 nsec, V, = 4.5 x 1014 z; m

with 6 = /2 this is ~6 x 10712,
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ABSTRACT

The accurate and reliable measurement of bond
stress in a solid propellant rocket motors is a
difficult task. Transducer sensing elements must
be bonded to the nonlinear viscoelastic solid pro-
pellant which is a highly corrosive material and
experiences large material property changes with age
and temperature variation. The rocket motor bond
stress changes over a broad range during storage,
thermal excursions, and ignition history. An
optimal stress transducer would be infinitely
small, have a rigid sensing system, have high
sensitivity, and exhibit excellent mechanical and
electrical stability with age. This paper presents
some of the engineering results obtained in the
evaluation of some current state-of-the-art stress
transducers.

INTRODUCTION

Bond stress measurements are required in solid pro-
pellant rocket motors to determine the reliability
of U.S. missile inventories. Solid rocket motor
grains tend to change properties after the motors
are manufactured, causing variations in motor
stress conditions which may induce structural
failures. A stable and accurate bond stress
transducer could be used as a gage to determine the
useful service life of a rocket motor.

Modified pressure transducers have been used to
measure the normal bond stresses of motors between
the soft propellant and the stiff rocket motor
case. Accuracy and stability of previous trans-
ducers were found to be poor since measurements
could not be repeated even after short-time inter-
vals. Two major problems occurred with early
stress transducers.

1. Mechanical and electrical stability of the
transducers were poor because of design and
fabrication limitations and lack of chemical
protection from the corrosive solid propellant
material.

2. The disturbance of the propellant stress field
was poorly understood and the sensing dia-
phragm-to-propellant interaction was not
minimized to avoid nonlinear diaphragm
performance.
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Conversion from measured electrical signals to a
meaningful stress value for the stress transducer
requires structural analysis to include the effects
of propellant stress disturbance, propellant inter-
action, and stress axiality. This type of informa-
tion is provided by finite element structural
analysis which includes computer modeling of the
entire transducer geometry in the solid propellant
medium. Results with some specific transducer
designs are presented as part of this paper.

Structural analysis is conducted on all solid
rocket motors to predict anticipated stress levels;
however, solid rocket motor structural failures
have occurred even when large margins of safety
have been calculated. Development of an inde-
pendent direct experimental measurement of bond
stress value would bypass the limitations of the
numerical stress analysis procedures and the
uncertainties in the nonlinear viscoelastic
properties of solid propellant and yield more accu-
rate safety margins. These direct stress measure-
ments can also be used to calibrate stress analysis
techniques.

Laboratory Calibration Techniques and Measurement
Uncertainties

Transducer calibration and data acquisition equip-
ment, similar to that shown in Figure 1, is used

to make routine electrical measurements with

stress transducers. A constant current excitation
source is used and monitored with a precision 10-
ohm resistor inserted in the excitation line. An
excitation level that produces the maximum gage
output without inducing gage self-heating when in
solid propellant has been determined to be 5 mA and
this is maintained during calibration and trans-
ducer applications. Transducer excitation polarity
must also be maintained throughout calibration and
application because semiconductor strain gages
exhibit some diode effects. Calibration is
routinely performed with the transducer submerged
in transformer o0il (such as Shell Diala 0il) or
similar fluid to minimize temperature fluctuation
due to pressure loading. Data is recorded on a
stable, accurate digital voltmeter, such as a Fluke
8800A, to insure maximum accuracy. A temperature
conditioning time of three hours is used before
stepwise pressure calibrations. This lengthy
conditioning time is necessary to insure that the



