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1 Stability Analysis of Prediction Models for
Landslide Hazard Mapping

CHANG-JO F. CHUNG
Geological Survey of Canada, Spatial Data Analysis Laboratory, Ontario, Canada

HIROHITO KOJIMA
Science University of Tokyo, Remote Sensing Laboratory, Chiba, Japan

AND

ANDREA G. FABBRI

International Institute for Aerospace Surveys and Earth Sciences, ITC, Enschede,
The Netherlands

ABSTRACT

This chapter discusses the influence of causal factors for landslide hazard mapping and
stability of the prediction results. Among many quantitative models, we consider a model
based on the theory of fuzzy sets with the algebraic sum operator. In the model, layers of
geoscience maps represent the spatial information used for the prediction of areas in which
the geomorphologic setting i1s similar to the ones in which a particular type of mass movement
has taken place. One of the main challenges in the selection of these causal factors is that of
how to compare two prediction models based on two different sets of casual factors. In the
application discussed here, a study area in the Rio Chincina region of central Colombia is
considered in which a spatial database was constructed for hazard mapping of ‘rapid debris
avalanches’. In the database eleven map-layer causal factors were selected, and the landslides
of rapid debris avalanches were divided into two subsequent periods, PRE-1960 (prior to
1960) and POST-1960 (after 1960). For the prediction, the eleven layers of information were
integrated as evidence toward a proposition that “points in the study area will be affected by
future mass movement’. The analysis discussed here assesses the stability of the predicted
hazard map with respect to the introduction or removal of each causal factor, i.e. of each map
layer, according to the following steps.

. A prediction map using all eleven causal factors was first constructed. Eleven prediction
maps were generated by subsequently eliminating different single factors. Difference or
DIF-maps were computed between the eleven maps and the prediction map using all
the eleven factors. All prediction maps were obtained using the PRE-1960 landslides
only. A ‘matching rate’ was then defined as a quantitative indicator associated to the
DIF-map.

Using the matching rates, the causal factors were divided into two groups: the ‘influent
factor group” and the ‘non-influent factor group'. For each of the three prediction maps
based on the influent factor group. non-influent factor group and all eleven factors, a
prediction-rate curve was obtained by comparing the prediction map and the distribution
of the POST-1960 landslides. The prediction power of the factors used in each prediction

9
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was measured by the statistics from the comparison. The subsequent investigation was on

the prediction differences between the two groups as fully described by the prediction-rate
curve.

The influent factor group was also studied in terms of its relevance in the prediction.

tad

The results of the study led to the following conclusions for the study area. (i) Although the
division of two groups was rather artificial, only six causal factors were considered as ‘influent
factor group’. The prediction power of the prediction map based on these six factors is as
good as that of the map using all eleven factors. The six factors are lithology. distance to
valley head, aspect, slope angle. elevation and relief patterns. The first three factors have
stronger influence in the prediction. (i1) The prediction power of the final map based on the
six influent causal factors was illustrated by the corresponding prediction-rate curve.

Comparing with the prediction map based on all eleven factors, the prediction map was stable
enough to be used for land-use planning.

1.1 INTRODUCTION

About one-quarter of the natural disasters in the world appear to be directly or indirectly
related to landslides, due to rainfall, local downpour, earthquakes and volcanic activities.
Human interventions by constructing social infrastructure are often the trigger of the
landslide phenomena. "When', "Where™ and "What scale’ are important aspects of landslides in
the prediction of geomorphologic settings and conditions in which landshides are likely to
occur. The problem 1s critical in developing countries where warning and protection measures
are particularly difficult to implement due to the limitation of economic conditions (Hansen
1984). The aim of this contribution 1s to predict where landslides may occur and analyse the
stability of the predictions.

Many research activities have been carried out for landshde prediction, using various kinds
of map data (e.g. Carrara 1983; Carrara et al. 1992; Kasa et al. 1991; Chung and Fabbri 1993;
Chung and Leclerc 1994; Fabbri and Chung 1996). Recently, the analysis of satellite remotely
sensed data has also been applied to the slope stability evaluation (Obayashi er al. 1995).
Some of the difficulties were:

. the selection of causal factors (usually specially compiled map data) for landslide
prediction:

the analytical procedure to test the influence of each causal factor in a prediction:

the interpretation of the results from a prediction.

o b

In this chapter, we plan to provide a systematic procedure to i1dentify and evaluate the
influence of causal factors on landslide prediction, in a study area. The difference or DIF-
maps represent an initial approximation of spatial correspondence between two prediction
patterns in a study area. While more complete comparisons can be easily computed for all the
classes of predicted values between pairs of predictions, the four-class DIF-maps between two
corresponding binary patterns used here facilitate the identification and visualization of
discrete spatial patterns.

In Figure 1.1, three hypothetical binary predictions (A, B and C) are considered, and the
accompanying three maps (D, E and F) show three DIF-maps. The prediction maps were
based on three models and the pair-wise DIF-maps of the three prediction maps were
generated from them. The black ellipses represent ten unknown ‘future’ landshdes to be
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D k. I

Figure 1.1 Prediction maps based on three models and the corresponding pair-wise difference or DIF-
maps. The black ellipses represent ten ‘future’ landslides to be predicted by the prediction models. In
cach prediction map, the grey rectangle represents the hazardous area and it occupies 25% of the whole
study area. The prediction powers of three prediction maps are identical, in that each map predicts five
future landslides (50%) of ten landslides to come, 1.e. each grey hazardous rectangle intersects five
ellipses. (A) Prediction map from Model 1. (B) Prediction map from Model 2. (C) Prediction map from
Model 3. (D) DIF-map between Model 1 and Model 2. (E) DIF-map between Model 2 and Model 3. (F)
DIF-map between Model 1 and Model 3

predicted by the prediction models. In each prediction map, the grey rectangle represents a
hazardous area and it occupies 25% of the whole study area. Each map predicts five future
landslides (50%) of the ten landslides to come, 1.e., each grey hazardous rectangle intersects
five ellipses. It implies that the prediction powers of three prediction maps are identical. The
DIF-map in Figure 1.1D shows no overlapping area and hence Model 1 (Figure 1.1A) and
Model 2 (Figure 1.1B) are distinctly different. However the DIF-map in Figure 1.IF has
much common area between the two models (Figure 1.1A and C). On one hand, if two
models generate two prediction maps with the corresponding DIF-map shown in Figure
[.1D., then it would be very difficult to make a land-use map by combining two prediction
maps. On the other hand, if two models generate the DIF-map shown in Figure 1.1F, it
would be easy to combine two prediction maps because the two maps have a reasonably
stable pattern. In this situation, we may be able to conclude that we can present a combined
prediction from Model 1 and Model 3 with a certain confidence. As a quantitative indicator
on a DIF-map. the following ‘matching rate’ was defined as:

Matching rate = common area (dark grey) / predicted hazardous area (light and dark grey)
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If two maps match perfectly, then the matching rate 1s 1. If two maps do not match at all,
then the matching rate 1s 0. Higher matching rates mean similar results in map 1 and map 2.
A lower matching rate means that the two maps are very different. The matching rate for the
DIF-map in Figure 1.1D 1s obviously 0, but the rate for DIF-map in (Figure 1.1F) is about
75%.

From an empirical study, assuming that two prediction maps have similar prediction
powers, we came to a conclusion that the matching rate should be at least 75% to combine
and subsequently interpret two prediction maps effectively. Otherwise two prediction maps
are informing two different descriptions of the landslides. However, if the matching rate is
lower than 75% and one prediction has much larger prediction power than the other map,
then we may ignore the prediction map with the lower prediction power.

Neither the DIF-maps nor the associated matching rates themselves provide any valid
measure of prediction power. It 1s only through the corresponding ‘prediction rates curve’
that we will provide that measure.

From the viewpoint of a land planner, the dark grey area in Figure 1.1E and F can be termed
the ‘stable hazardous™ areas. On the other hand, the light grey areas in Figure 1.1E and F are
termed ‘non-stable hazardous’ areas in the DIF-map. The ‘non-stable hazardous’ areas mean
that we do not have much information on these pixels concerning the studied landslide hazard.
According to Kasa et al. (1991, 1992) more supporting information 1s essential for decision-
making in carrying out landslide prevention plans in the non-hazardous areas.

1.2 STUDY AREA, DATA SETS AND PREDICTION MODEL
1.2.1 Study Area and Causal Factors

The catchment of the Rio Chincina, located on the western slope of the central Andean
mountain range (Cordillera Central) in Colombia, near the Nevado del Ruiz volcano, was
used as a test for various landslide hazard zonation techniques. Van Westen (1993) made an
extensive study of the region and constructed the database of the study area. Since then the
database was made available as a case-study data set for many kinds of exercises and
experiments on landslide hazard zoning by van Westen et al. (1993), with the name GISSIZ:
training package of Geographic Information Systems on Slope Instability Zonation. It 1s on
that data set that Chung ef al. (1995) have developed several multivariate regression models
for landslide hazard mapping.

The input data for landslide hazard mapping usually consist of several layers of map
information. Each layer may be the result of map updating by experts, of field verification
and of interpretation of aerial photographs. The resulting maps describe surficial and bedrock
geology, soil type, slope, land use, geomorphology, mass movements, distance from active
faults and other features, including man-made ones, that are relevant to slope instability. In
addition, the identification of types and dates of landslide phenomena 1s critical to the
application of predictive techniques.

Among many layers of spatial data constructed by van Westen (1993), he has suggested
that the following seven data layers are ‘causal factors’ and are significantly related to
landslide hazard: (1) bedrock lithological map; (2) geomorphological map; (3) slope-angle
map; (4) land-use map; and three maps containing distances from the nearest valley head (),
from roads (6) and faults (7). In particular, translational mass movements termed ‘rapid
debris avalanches’ (or ‘derrumbes’ in Spanish) were studied and predicted using the above
causal factors. The initial seven maps and four additional ones derived from the elevation
map are described in Table 1.1.



