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Preface

Parallel computers consisting of thousands of processors are now commercially available.
These computers provide many orders of magnitude more raw computing power than tra-
ditional supercomputers at much lower cost. They open up new frontiers in the application
of computers—many previously unsolvable problems can be solved if the power of these
machines is used effectively. The availability of massively parallel computers has created
a number of challenges, for example: How should parallel computers be programmed?
What algorithms and data structures should be used? How can the quality of the algorithms
be analyzed? Which algorithms are suitable for particular parallel computer architectures?

This book attempts to answer these and other questions about parallel computing. It
presents a self-contained discussion of the basic concepts of parallel computer architectures
and parallel algorithms for a variety of applications. The text is intended for senior
undergraduate and graduate-level students, but is advanced enough to serve as a reference
for practicing algorithm designers and application programmers. We hope that this book
will bring an understanding of parallel processing to a wide range of people interested in
solving problems on parallel computers.

Most of the material has been extensively class-tested. The book evolved out of
a series of courses on related topics taught by the senior author, Vipin Kumar, over the
past ten years. The other three authors have been actively conducting research on parallel
computing under the supervision of the senior author. In Fall 1992, they joined him to
prepare a comprehensive textbook on the design, analysis, and implementation of parallel
algorithms on different parallel architectures. In particular, Ananth Grama took charge of
Chapters 1, 2, 8, and 9; Anshul Gupta wrote Chapters 3, 4, 5, 10, and 11; and George
Karypis was responsible for Chapters 6, 7, 12, and 13.

It is impossible to cover all the material in this book in a single course. However,
a variety of courses can be taught using different chapters. Some suggestions for course
contents are:

(1) Introduction to Parallel Computing: Chapters 1 and 2, selected parts of Chapters
3,4, and 13, and a sample of algorithms from the remaining chapters.

(2) Design and Analysis of Parallel Algorithms: Chapter 1, portions of Chapters 2,
3, and 4, and selected algorithms from Chapters 5 through 12.

xiii
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(3) Parallel Numerical Algorithms or Parallel Scientific Computing: Chapters 1, 5,
and 10-12, and parts of Chapters 2—4 and 13.

The senior author has been teaching a two-quarter sequence titled Introduction to
Parallel Computing in the Computer Science Department at the University of Minnesota
using drafts of the book. The first seven chapters are covered in the first quarter, and the
remaining six in the second quarter. The senior author also teaches the course High Per-
formance Computing for the scientific computing program at the University of Minnesota.
This course is taken primarily by graduate students in the sciences and engineering (such
as mechanical engineering, chemistry, and biology) who are interested in solving compu-
tationally intensive problems on parallel computers. This course covers parts of Chapters
1-5, 11, and 13.

Most chapters of the book include (1) examples and illustrations, (2) problems that
supplement the text and test students’ understanding of the material, and (3) bibliographic
remarks to aid researchers and students interested in learning more about related and
advanced topics. The notation used to express the complexity of functions and order
analysis is explained in Appendix A. A glossary was originally planned, but was dropped
in favor of a comprehensive index. In the index, the number of the page on which a term
is explicitly defined appears in boldface type. Furthermore, the term itself appears in bold
italics where it is defined. The sections that deal with relatively complicated material are
preceded by a ‘x’. An instructors’ manual containing slides of the figures and solutions to
selected problems is also available from the publisher.

We view this book as a continually evolving resource. Readers are encouraged to send
suggestions and information related to the material in the book to the authors, preferably
by electronic mail to book-vk@cs.umn.edu. We welcome ideas, opinions, critiques, new
problems, and programs for the algorithms in the book. Any such input will be added to
the information archived in the directory bc/kumar at the anonymous FTP site bc.aw.com
with due credits to the sender(s). On-line errata for the text will be maintained at the same
site. In the highly-dynamic field of parallel computing, there is a lot to be gained from a
healthy exchange of ideas in this manner.
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CHAPTER 1

Introduction

Ever since conventional serial computers were invented, their speed has steadily increased
to match the needs of emerging applications. However, the fundamental physical limitation
imposed by the speed of light makes it impossible to achieve further improvements in the
speed of such computers indefinitely. Recent trends show that the performance of these
computers is beginning to saturate. A natural way to circumvent this saturation is to use an
ensemble of processors to solve problems.

A cost-performance comparison of serial computers over the last few decades shows
an interesting evolutionary trend. Figure 1.1 represents typical cost-performance curves of
serial computers over the past three decades. At the lower end of each curve, performance
increases almost linearly (or even faster than linearly) with cost. However, beyond a
certain point, each curve starts to saturate, and even small gains in performance come at
an exorbitant increase in cost. Furthermore, this transition point has become sharper with
the passage of time, primarily as a result of advances in very large scale integration (VLSI)

Performance |[: 4

Cost

Figure 1.1 Cost versus performance curve and its
evolution over the decades.
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technology. It is now possible to construct very fast, low-cost processors. This increases
the demand for and production of these processors, resulting in lower prices.

Currently, the speed of off-the-shelf microprocessors is within one order of magnitude
of the speed of the fastest serial computers. However, microprocessors cost many orders
of magnitude less. This implies that, by connecting only a few microprocessors together to
form a parallel computer, it is possible to obtain raw computing power comparable to that of
the fastest serial computers. Typically, the cost of such a parallel computer is considerably
less.

Furthermore, connecting a large number of processors into a parallel computer over-
comes the saturation point of the computation rates achievable by serial computers. Thus,
parallel computers can provide much higher raw computation rates than the fastest serial
computers as long as this power can be translated into high computation rates for actual
applications.

1.1 What is Parallel Computing?

This section illustrates some important aspects of parallel computing by drawing an analogy
to a real-life scenario.

Consider the problem of stacking (reshelving) a set of library books. A single worker
trying to stack all the books in their proper places cannot accomplish the task faster than a
certain rate. We can speed up this process, however, by employing more than one worker.
Assume that the books are organized into shelves and that the shelves are grouped into
bays. One simple way to assign the task to the workers is to divide the books equally
among them. Each worker stacks the books one at a time. This division of work may
not be the most efficient way to accomplish the task, since the workers must walk all over
the library to stack books. An alternate way to divide the work is to assign a fixed and
disjoint set of bays to each worker. As before, each worker is assigned an equal number
of books arbitrarily. If a worker finds a book that belongs to a bay assigned to him or her,
he or she places that book in its assigned spot. Otherwise, he or she passes it on to the
worker responsible for the bay it belongs to. The second approach requires less effort from
individual workers.

The preceding example shows how a task can be accomplished faster by dividing it
into a set of subtasks assigned to multiple workers. Workers cooperate, pass the books to
each other when necessary, and accomplish the task in unison. Parallel processing works
on precisely the same principles. Dividing a task among workers by assigning them a set
of books is an instance of task partitioning. Passing books to each other is an example of
communication between subtasks.

Problems are parallelizable to different degrees. For some problems, assigning par-
titions to other processors might be more time-consuming than performing the processing
locally. Other problems may be completely serial. For example, consider the task of
digging a post hole. Although one person can dig a hole in a certain amount of time,
employing more people does not reduce this time. Because it is impossible to partition this
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task, it is poorly suited to parallel processing. Therefore, a problem may have different
parallel formulations, which result in varying benefits, and all problems are not equally
amenable to parallel processing.

1.2 The Scope of Parallel Computing

Parallel processing is making a tremendous impact on many areas of computer application.
With the high raw computing power of parallel computers, it is now possible to address
many applications that were until recently beyond the capability of conventional computing
techniques.

Many applications, such as weather prediction, biosphere modeling, and pollution
monitoring, are modeled by imposing a grid over the domain being modeled. The entities
within grid elements are simulated with respect to the influence of other entities and
their surroundings. In many cases, this requires solutions to large systems of differential
equations. The granularity of the grid determines the accuracy of the model. Since
many such systems are evolving with time, time forms an additional dimension for these
computations. Even for a small number of grid points, a three-dimensional coordinate
system, and a reasonable discretized time step, this modeling process can involve trillions
of operations (Example 1.1). Thus, even moderate-sized instances of these problems take
an unacceptably long time to solve on serial computers.

Example 1.1 Weather Modeling and Forecasting

Consider the modeling of weather over an area of 3000 x 3000 miles. The parameters
must also be modeled along the vertical plane. Assume that the area is being modeled
up to a height of 11 miles. Assume that the 3000 x 3000 x 11 cubic mile domain is
partitioned into segments of size 0.1 x 0.1 x 0.1 cubic miles. There are approximately
10'! different segments. The weather modeling process involves time as another
dimension. Time is quantized and parameters are computed for each segment at
regular time intervals.

Let us further assume that we are modeling the weather over a two-day period
and the parameters need to be computed once every half hour. (Note that the
assumptions are conservative and more accurate modeling requires much higher
computation rates.) The computation of parameters inside a segment uses the initial
values and the values from neighboring segments. Assume that this computation takes
100 instructions. Therefore, a single updating of the parameters in the entire domain
requires 10'" x 100, or 10'? instructions. Since this has to be done approximately 100
times (two days), the total number of operations is 10'°. On a serial supercomputer
capable of performing one billion instructions per second, this modeling would take
approximately 280 hours. Taking 280 hours to predict the weather for the next 48
hours is unreasonable to say the least.

Parallel processing makes it possible to predict the weather not only faster but
also more accurately. If we have a parallel computer with a thousand workstation-



