N N

4% INTRODUCTION TO

COMPUTING

DESIGN AND ANALYSIS OF ALGORITHMS

ANANTH GRAMA
[B By |
¥} ANSHUL GUPTA
S S ..
GEORGE KARYPIS

Introduction to
Parallel Computing

Design and Analysis of Algorithms

Vipin Kumar
Ananth Grama
Anshul Gupta
George Karypis

University of Minnesota

The Benjamin/Cummings Publishing Company, Inc.

Redwood City, California = Menlo Park, California

Reading, Massachusetts = New York = Don Mills, Ontario = Wokingham, U.K.
Amsterdam = Bonn = Sydney = Singapore = Tokyo = Madrid = San Juan

Executive editor: Dan Joraanstad
Sponsoring editor: Carter Shanklin

Editorial assitant: Melissa Standen
Production supervisor: Gwen Larson
Production management: Matrix Productions
Cover design: Yvo Riezebos Design

Copyright © 1994 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Additional copyright and
trademark information can be found at the end of the book. Printed in the United States of
America. Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data

Introduction to parallel computing ¢ designiand*analysis of parallel algorithms
Vipin Kumar... [et al.].
p. cm.
Includes biographical references:and index.
ISBN 0-8053-3170-0
1. Parallel processing (Electonic computegs) 2. Computer algorithms.

I. Grama, Ananth. II. Gupta, Anshul. ‘III. Karypis, George.
QA76.58.158 1994
005.2—dc20 93-34230

ISBN 0-8053-3170-0
456789 10-CRW-98 97

The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway
Redwood City, California 94065

Preface

Parallel computers consisting of thousands of processors are now commercially available.
These computers provide many orders of magnitude more raw computing power than tra-
ditional supercomputers at much lower cost. They open up new frontiers in the application
of computers—many previously unsolvable problems can be solved if the power of these
machines is used effectively. The availability of massively parallel computers has created
a number of challenges, for example: How should parallel computers be programmed?
What algorithms and data structures should be used? How can the quality of the algorithms
be analyzed? Which algorithms are suitable for particular parallel computer architectures?

This book attempts to answer these and other questions about parallel computing. It
presents a self-contained discussion of the basic concepts of parallel computer architectures
and parallel algorithms for a variety of applications. The text is intended for senior
undergraduate and graduate-level students, but is advanced enough to serve as a reference
for practicing algorithm designers and application programmers. We hope that this book
will bring an understanding of parallel processing to a wide range of people interested in
solving problems on parallel computers.

Most of the material has been extensively class-tested. The book evolved out of
a series of courses on related topics taught by the senior author, Vipin Kumar, over the
past ten years. The other three authors have been actively conducting research on parallel
computing under the supervision of the senior author. In Fall 1992, they joined him to
prepare a comprehensive textbook on the design, analysis, and implementation of parallel
algorithms on different parallel architectures. In particular, Ananth Grama took charge of
Chapters 1, 2, 8, and 9; Anshul Gupta wrote Chapters 3, 4, 5, 10, and 11; and George
Karypis was responsible for Chapters 6, 7, 12, and 13.

It is impossible to cover all the material in this book in a single course. However,
a variety of courses can be taught using different chapters. Some suggestions for course
contents are:

(1) Introduction to Parallel Computing: Chapters 1 and 2, selected parts of Chapters
3,4, and 13, and a sample of algorithms from the remaining chapters.

(2) Design and Analysis of Parallel Algorithms: Chapter 1, portions of Chapters 2,
3, and 4, and selected algorithms from Chapters 5 through 12.

xiii

Xiv Preface

(3) Parallel Numerical Algorithms or Parallel Scientific Computing: Chapters 1, 5,
and 10-12, and parts of Chapters 2—4 and 13.

The senior author has been teaching a two-quarter sequence titled Introduction to
Parallel Computing in the Computer Science Department at the University of Minnesota
using drafts of the book. The first seven chapters are covered in the first quarter, and the
remaining six in the second quarter. The senior author also teaches the course High Per-
formance Computing for the scientific computing program at the University of Minnesota.
This course is taken primarily by graduate students in the sciences and engineering (such
as mechanical engineering, chemistry, and biology) who are interested in solving compu-
tationally intensive problems on parallel computers. This course covers parts of Chapters
1-5, 11, and 13.

Most chapters of the book include (1) examples and illustrations, (2) problems that
supplement the text and test students’ understanding of the material, and (3) bibliographic
remarks to aid researchers and students interested in learning more about related and
advanced topics. The notation used to express the complexity of functions and order
analysis is explained in Appendix A. A glossary was originally planned, but was dropped
in favor of a comprehensive index. In the index, the number of the page on which a term
is explicitly defined appears in boldface type. Furthermore, the term itself appears in bold
italics where it is defined. The sections that deal with relatively complicated material are
preceded by a ‘x’. An instructors’ manual containing slides of the figures and solutions to
selected problems is also available from the publisher.

We view this book as a continually evolving resource. Readers are encouraged to send
suggestions and information related to the material in the book to the authors, preferably
by electronic mail to book-vk@cs.umn.edu. We welcome ideas, opinions, critiques, new
problems, and programs for the algorithms in the book. Any such input will be added to
the information archived in the directory bc/kumar at the anonymous FTP site bc.aw.com
with due credits to the sender(s). On-line errata for the text will be maintained at the same
site. In the highly-dynamic field of parallel computing, there is a lot to be gained from a
healthy exchange of ideas in this manner.

Acknowledgements

Working on this project has been a source of great pleasure for us. At this juncture, we would
like to acknowledge the people who worked with us and helped make this project a reality.
We are most indebted to Tom Nurkkala and Daniel Challou, whose untiring editorial
efforts have gone a long way to improve the quality of the text. They read every chapter
several times, and gave technical, grammatical, and typesetting comments. Furthermore,
their suggestions led to the addition of many new examples and illustrations. Without
their contribution, this project would have stretched far longer and the impact of the book
would have been diminished. We also express our gratitude to Michael Heath, who took
great personal interest in the project. His comments were invaluable in improving both

Preface XV

the technical content and the quality of the material presented. We appreciate the efforts
of Gregory Andrews, Daniel Boley, Shantanu Dutt, Rob Fowler, Joydeep Ghosh, Dirk
Grunwald, John Gustafson, Charles Martel, Dan Miranker, Viktor Prasanna, Youcef Saad,
and Vikram Saletore in reviewing the manuscript and suggesting improvements. Victor
Prasanna used parts of the preliminary drafts of the book for his class and provided valuable
feedback. Any remaining errors or omissions in the text are the sole responsibility of the
authors.

Many other people contributed to this project in different ways. We thank Jake
Aggarwal, Gul Agha, Mani Chandy, Tom Cormen, Tse-Yun Feng, David Fox, Robert
Hiromoto, Kai Hwang, Bharat Jairaman, L. V. Kale, Laveen Kanal, Tom Leighton, Babu
Narayanan, Lionel Ni, Michael Quinn, Ben Rosen, Sartaj Sahni, Ahmed Sameh, Vineet
Singh, Larry Snyder, and N. R. Vempaty for providing valuable input at various stages. We
thank the students of the Introduction to Parallel Computing course at the University of
Minnesota for identifying and working through errors in the drafts. In particular, comments
from Minesh Amin, Dan Frankowski, Dave Truckenmiller, and Steve Waldo were very
useful. We are thankful to Amy Gaukel for meticulously checking all the references and
correcting the errors in them. It was a pleasure to work with the cooperative and helpful staff
at Benjamin/Cummings. In particular, we thank John Carter Shanklin, Melissa Standen,
Merrill Peterson, Dan Joranstad, and Adam Ray for their effort and cooperation.

We thank our family members, Akash, Chethan, Kalpana, Krista, Renu, Vipasha, and
Anshu, for their affectionate support, patience, and encouragement throughout the duration
of this project.

The Army Research Office (ARO) and the National Science Foundation provided
support to the senior author for parallel computing research over the last decade. In
particular, we thank Dr. Jag Chandra and Dr. Ken Clark of the ARO for supporting
our research on scalable parallel algorithms at an early stage. Many of the results of this
research appear in the book. The Army High Performance Computing Research Center and
the Department of Computer Science at the University of Minnesota provided an active and
nurturing environment for conducting research. We express our gratitude to the University
of Minnesota for the computing facilities used to prepare the manuscript.

Vipin Kumar
Ananth Grama
Anshul Gupta
George Karypis

Minneapolis, Minnesota

Contents

Preface xiii

CHAPTER 1

Introduction 1

1.1 What is Parallel Computing? 2
1.2 The Scope of Parallel Computing 3
1.3 Issues in Parallel Computing 4
1.4 Organization and Contents of the Text 5
1.5 Bibliographic Remarks 8
Problems 9
References 10

CHAPTER 2

Models of Parallel Computers 15

2.1 A Taxonomy of Parallel Architectures 16
2.1.1 Control Mechanism 16
2.1.2 Address-Space Organization 18
2.1.3 Interconnection Networks 22
2.1.4 Processor Granularity 22
2.2 An Idealized Parallel Computer 23
2.3 Dynamic Interconnection Networks 24
2.3.1 Crossbar Switching Networks 24
2.3.2 Bus-Based Networks 25
2.3.3 Multistage Interconnection Networks 26
2.4 Static Interconnection Networks 30
2.4.1 Types of Static Interconnection Networks 30
2.4.2 Evaluating Static Interconnection Networks 37

vi Contents

2.5 Embedding Other Networks into a Hypercube 39
2.5.1 Embedding a Linear Array into a Hypercube = 39
2.5.2 Embedding a Mesh into a Hypercube 41
2.5.3 Embedding a Binary Tree into a Hypercube 42
2.6 Routing Mechanisms for Static Networks 42
2.7 Communication Costs in Static Interconnection Networks 45
2.7.1 Store-and-Forward Routing 45
2.7.2 Cut-Through Routing 46
2.8 Cost-Performance Tradeoffs 48
2.9 Architectural Models for Parallel Algorithm Design 49
2.10 Bibliographic Remarks 51
Problems 54
References 60

CHAPTER 3

Basic Communication Operations 65

3.1 Simple Message Transfer between Two Processors 66
3.2 One-to-All Broadcast 66
3.2.1 Store-and-Forward Routing 67
3.2.2 Cut-Through Routing 75
3.3 All-to-All Broadcast, Reduction, and Prefix Sums 77
3.3.1 Store-and-Forward Routing 78
3.3.2 Cut-Through Routing 86
3.4 One-to-All Personalized Communication 88
3.5 All-to-All Personalized Communication 90
3.5.1 Store-and-Forward Routing 90
3.5.2 Cut-Through Routing 95
3.6 Circular Shift 98
3.6.1 Store-and-Forward Routing 98
3.6.2 Cut-Through Routing 101
3.7 Faster Methods for Some Communication Operations 101
3.7.1 Routing Messages in Parts 102
3.7.2 All-Port Communication 104
3.7.3 Special Hardware for Global Operations 105
3.8 Summary 106
3.9 Bibliographic Remarks 107
Problems 108
References 114

Contents vii

CHAPTER 4

Performance and Scalability of Parallel Systems 117

4.1

4.2
43
44

4.5

4.6
4.7

Performance Metrics for Parallel Systems 117

4.1.1 Run Time 117

4.1.2 Speedup 118

4.1.3 Efficiency 120

4.14 Cost 120

The Effect of Granularity and Data Mapping on Performance 121
The Scalability of Parallel Systems 126

The Isoefficiency Metric of Scalability 128

4.4.1 Problem Size 129

4.4.2 The Overhead Function 129

4.4.3 The Isoefficiency Function 130

4.4.4 Cost-Optimality and the Isoefficiency Function 133

4.4.5 A Lower Bound on the Isoefficiency Function 134

4.4.6 The Degree of Concurrency and the Isoefficiency Function 134
Sources of Parallel Overhead 135

4.5.1 Interprocessor Communication 135

4.5.2 Load Imbalance 135

4.5.3 Extra Computation 136

Minimum Execution Time and Minimum Cost-Optimal Execution Time 136
Other Scalability Metrics and Bibliographic Remarks 139
Problems 141

References 146

CHAPTER 5

Dense Matrix Algorithms 151

5.1

5.2

5.3

54

Mapping Matrices onto Processors 151
5.1.1 Striped Partitioning 151

5.1.2 Checkerboard Partitioning 152
Matrix Transposition 153

5.2.1 Checkerboard Partitioning 154
5.2.2 Striped Partitioning 159
Matrix-Vector Multiplication 160

5.3.1 Rowwise Striping 160

5.3.2 Checkerboard Partitioning 163
Matrix Multiplication 168

5.4.1 A Simple Parallel Algorithm 169

viii

5.5

5.6

Contents

5.4.2 Cannon’s Algorithm 171

5.4.3 Fox’s Algorithm 173

5.4.4 The DNS Algorithm 174

Solving a System of Linear Equations 178

5.5.1 A Simple Gaussian Elimination Algorithm 179
5.5.2 Gaussian Elimination with Partial Pivoting 192
5.5.3 Solving a Triangular System: Back-Substitution 195
5.5.4 Numerical Considerations in Solving Systems of Linear Equations
Bibliographic Remarks 197

Problems 198

References 204

CHAPTER 6

196

Sorting 209

6.1

6.2

6.3

6.4

6.5

6.6

Issues in Sorting on Parallel Computers 210

6.1.1 Where the Input and Output Sequences Are Stored 210
6.1.2 How Comparisons Are Performed 210

Sorting Networks 212

6.2.1 Bitonic Sort 214

6.2.2 Mapping Bitonic Sort onto a Hypercube and a Mesh 216
Bubble Sort and Its Variants 224

6.3.1 Odd-Even Transposition 225

6.3.2 Shellsort 227

Quicksort 229

6.4.1 Parallelizing Quicksort 231

6.4.2 A Comparison of Quicksort Formulations 243

Other Sorting Algorithms 243

6.5.1 Enumeration Sort 243

6.5.2 Bucket Sort 244

6.5.3 Sample Sort 245

6.5.4 Radix Sort 247

Bibliographic Remarks 247

Problems 250

References 254

CHAPTER 7

Graph Algorithms 257

7.1

Definitions and Representation 257

7.2
7.3
7.4

75
7.6

7.7

7.8

Contents ix

Minimum Spanning Tree: Prim’s Algorithm 260
Single-Source Shortest Paths: Dijkstra’s Algorithm 265
All-Pairs Shortest Paths 266

7.4.1 Matrix-Multiplication Based Algorithm 266
7.4.2 Dijkstra’s Algorithm 268

7.4.3 Floyd’s Algorithm 271

7.4.4 Performance Comparisons 276

Transitive Closure 276

Connected Components 278

7.6.1 A Depth-First Search Based Algorithm 278
Algorithms for Sparse Graphs 281

7.7.1 Single-Source Shortest Paths 284
Bibliographic Remarks 290

Problems 293

References 295

CHAPTER 8

Search Algorithms for Discrete Optimization
Problems 299

8.1
8.2

83
8.4

8.5
8.6

8.7

Definitions and Examples 299

Sequential Search Algorithms 304

8.2.1 Depth-First Search Algorithms 304

8.2.2 Best-First Search Algorithms 308

Search Overhead Factor 308

Parallel Depth-First Search 310

8.4.1 Important Parameters of Parallel DFS 313

8.4.2 A General Framework for Analysis of Parallel DFS 315
8.4.3 Analysis of Load-Balancing Schemes for Hypercubes 318
8.4.4 Analysis of Load-Balancing Schemes for a Network of Workstations
8.4.5 Termination Detection 321

8.4.6 Experimental Results 325

8.4.7 Parallel Formulations of Depth-First Branch-and-Bound Search
8.4.8 Parallel Formulations of IDA* 328

8.4.9 Parallel DFS on SIMD Computers 329

Parallel Best-First Search 332

Speedup Anomalies in Parallel Search Algorithms 336

8.6.1 Analysis of Average Speedup in Parallel DFS 338
Bibliographic Remarks 340

Problems 343

References 348

320

328

X Contents

CHAPTER 9

Dynamic Programming 355

9.1 Serial Monadic DP Formulations 357

9.1.1 The Shortest-Path Problem 358

9.1.2 The 0/1 Knapsack Problem 360
9.2 Nonserial Monadic DP Formulations 362

9.2.1 The Longest-Common-Subsequence Problem 363
9.3 Serial Polyadic DP Formulations 365

9.3.1 Floyd’s All-Pairs Shortest-Paths Algorithm 365
9.4 Nonserial Polyadic DP Formulations 366

9.4.1 The Optimal Matrix-Parenthesization Problem 366
9.5 Summary and Discussion 369
9.6 Bibliographic Remarks 370

Problems 371

References 375

CHAPTER 10

Fast Fourier Transform 377

10.1 The Serial Algorithm 377
10.2 The Binary-Exchange Algorithm 382

10.2.1 Hypercube 383

10.2.2 Mesh 388

10.2.3 Extra Computations in Parallel FFT 390
10.3 The Transpose Algorithm 393

10.3.1 Two-Dimensional Transpose Algorithm 393

10.3.2 The Generalized Transpose Algorithm 396
10.4 Cost-Effectiveness of Meshes and Hypercubes for FFT 400
10.5 Bibliographic Remarks 403

Problems 404

References 405

CHAPTER M1

Solving Sparse Systems of Linear Equations

11.1 Basic Operations 409
11.1.1 Storage Schemes for Sparse Matrices 409
11.1.2 Vector Inner Product 412

407

11.2

11.3
11.4

11.5
11.6

Contents

11.1.3 Sparse Matrix-Vector Multiplication 413
Iterative Methods for Sparse Linear Systems 426
11.2.1 Jacobi Iterative Method ~ 427

11.2.2 Gauss-Seidel and SOR Methods 429
11.2.3 The Conjugate Gradient Method 433
Finite Element Method 446

Direct Methods for Sparse Linear Systems 454
11.4.1 Ordering 455

11.4.2 Symbolic Factorization 458

11.4.3 Numerical Factorization 458

11.4.4 Solving a Triangular System 468
Multigrid Methods 468

Bibliographic Remarks 474

Problems 477

References 482

CHAPTER 12

Xi

Systolic Algorithms and their Mapping onto Parallel
Computers 491

12.1

12.2

12.3

12.4

12.5

Examples of Systolic Systems 493

12.1.1 Convolution 493

12.1.2 Banded Matrix-Vector Multiplication 496

12.1.3 Matrix Multiplication =~ 499

12.1.4 Optimal Matrix Parenthesization 501

General Issues in Mapping Systolic Systems onto Parallel Computers 505

12.2.1 Architectural Differences between Systolic Arrays and Parallel
Computers 505

12.2.2 Absolute Efficiency of Systolic Systems 506

Mapping One-Dimensional Systolic Arrays 507

12.3.1 Virtual Processors 508

12.3.2 Block-Striped Mapping 508

12.3.3 Other One-Dimensional Mappings 511

Mapping Two-Dimensional Systolic Arrays 513

12.4.1 Block-Checkerboard Mapping 514

12.4.2 Cyclic-Checkerboard Mapping 516

12.4.3 Summary of Two-Dimensional Mappings 518

Bibliographic Remarks 518

Problems 520

References 521

xii Contents

CHAPTER 13

Parallel Programming 525

13.1 Parallel Programming Paradigms 525
13.1.1 Explicit versus Implicit Parallel Programming 525
13.1.2 Shared-Address-Space versus Message-Passing 526
13.1.3 Data Parallelism versus Control Parallelism 527
13.2 Primitives for the Message-Passing Programming Paradigm 529
13.2.1 Basic Extensions 529
13.2.2 nCUBE2 531
13.2.3 iPSC860 532
13.2.4 CM-5 533
13.2.5 Example Program 535
13.3 Data-Parallel Languages 538
13.3.1 Data Partitioning and Virtual Processors 539
13.32 C* 540
13.3.3 CM Fortran 549
13.4 Primitives for the Shared-Address-Space Programming Paradigm 551
13.4.1 Primitives to Allocate Shared Variables 552
13.4.2 Primitives for Mutual Exclusion and Synchronization 552
13.4.3 Primitives for Creating Processes 553
13.4.4 Sequent Symmetry 553
13.4.5 Example Programs 554
13.5 FortranD 558
13.5.1 Problem Mapping 559
13.5.2 Machine Mapping 561
13.5.3 Example Program 562
13.6 Bibliographic Remarks 564
References 566

APPENDIX A

Complexity of Functions and Order Analysis

Author Index 575
Subject Index 583

571

CHAPTER 1

Introduction

Ever since conventional serial computers were invented, their speed has steadily increased
to match the needs of emerging applications. However, the fundamental physical limitation
imposed by the speed of light makes it impossible to achieve further improvements in the
speed of such computers indefinitely. Recent trends show that the performance of these
computers is beginning to saturate. A natural way to circumvent this saturation is to use an
ensemble of processors to solve problems.

A cost-performance comparison of serial computers over the last few decades shows
an interesting evolutionary trend. Figure 1.1 represents typical cost-performance curves of
serial computers over the past three decades. At the lower end of each curve, performance
increases almost linearly (or even faster than linearly) with cost. However, beyond a
certain point, each curve starts to saturate, and even small gains in performance come at
an exorbitant increase in cost. Furthermore, this transition point has become sharper with
the passage of time, primarily as a result of advances in very large scale integration (VLSI)

Performance |[: 4

Cost

Figure 1.1 Cost versus performance curve and its
evolution over the decades.

2 Intfroduction

technology. It is now possible to construct very fast, low-cost processors. This increases
the demand for and production of these processors, resulting in lower prices.

Currently, the speed of off-the-shelf microprocessors is within one order of magnitude
of the speed of the fastest serial computers. However, microprocessors cost many orders
of magnitude less. This implies that, by connecting only a few microprocessors together to
form a parallel computer, it is possible to obtain raw computing power comparable to that of
the fastest serial computers. Typically, the cost of such a parallel computer is considerably
less.

Furthermore, connecting a large number of processors into a parallel computer over-
comes the saturation point of the computation rates achievable by serial computers. Thus,
parallel computers can provide much higher raw computation rates than the fastest serial
computers as long as this power can be translated into high computation rates for actual
applications.

1.1 What is Parallel Computing?

This section illustrates some important aspects of parallel computing by drawing an analogy
to a real-life scenario.

Consider the problem of stacking (reshelving) a set of library books. A single worker
trying to stack all the books in their proper places cannot accomplish the task faster than a
certain rate. We can speed up this process, however, by employing more than one worker.
Assume that the books are organized into shelves and that the shelves are grouped into
bays. One simple way to assign the task to the workers is to divide the books equally
among them. Each worker stacks the books one at a time. This division of work may
not be the most efficient way to accomplish the task, since the workers must walk all over
the library to stack books. An alternate way to divide the work is to assign a fixed and
disjoint set of bays to each worker. As before, each worker is assigned an equal number
of books arbitrarily. If a worker finds a book that belongs to a bay assigned to him or her,
he or she places that book in its assigned spot. Otherwise, he or she passes it on to the
worker responsible for the bay it belongs to. The second approach requires less effort from
individual workers.

The preceding example shows how a task can be accomplished faster by dividing it
into a set of subtasks assigned to multiple workers. Workers cooperate, pass the books to
each other when necessary, and accomplish the task in unison. Parallel processing works
on precisely the same principles. Dividing a task among workers by assigning them a set
of books is an instance of task partitioning. Passing books to each other is an example of
communication between subtasks.

Problems are parallelizable to different degrees. For some problems, assigning par-
titions to other processors might be more time-consuming than performing the processing
locally. Other problems may be completely serial. For example, consider the task of
digging a post hole. Although one person can dig a hole in a certain amount of time,
employing more people does not reduce this time. Because it is impossible to partition this

1.2 The Scope of Parallel Computing 3

task, it is poorly suited to parallel processing. Therefore, a problem may have different
parallel formulations, which result in varying benefits, and all problems are not equally
amenable to parallel processing.

1.2 The Scope of Parallel Computing

Parallel processing is making a tremendous impact on many areas of computer application.
With the high raw computing power of parallel computers, it is now possible to address
many applications that were until recently beyond the capability of conventional computing
techniques.

Many applications, such as weather prediction, biosphere modeling, and pollution
monitoring, are modeled by imposing a grid over the domain being modeled. The entities
within grid elements are simulated with respect to the influence of other entities and
their surroundings. In many cases, this requires solutions to large systems of differential
equations. The granularity of the grid determines the accuracy of the model. Since
many such systems are evolving with time, time forms an additional dimension for these
computations. Even for a small number of grid points, a three-dimensional coordinate
system, and a reasonable discretized time step, this modeling process can involve trillions
of operations (Example 1.1). Thus, even moderate-sized instances of these problems take
an unacceptably long time to solve on serial computers.

Example 1.1 Weather Modeling and Forecasting

Consider the modeling of weather over an area of 3000 x 3000 miles. The parameters
must also be modeled along the vertical plane. Assume that the area is being modeled
up to a height of 11 miles. Assume that the 3000 x 3000 x 11 cubic mile domain is
partitioned into segments of size 0.1 x 0.1 x 0.1 cubic miles. There are approximately
10'! different segments. The weather modeling process involves time as another
dimension. Time is quantized and parameters are computed for each segment at
regular time intervals.

Let us further assume that we are modeling the weather over a two-day period
and the parameters need to be computed once every half hour. (Note that the
assumptions are conservative and more accurate modeling requires much higher
computation rates.) The computation of parameters inside a segment uses the initial
values and the values from neighboring segments. Assume that this computation takes
100 instructions. Therefore, a single updating of the parameters in the entire domain
requires 10'" x 100, or 10'? instructions. Since this has to be done approximately 100
times (two days), the total number of operations is 10'°. On a serial supercomputer
capable of performing one billion instructions per second, this modeling would take
approximately 280 hours. Taking 280 hours to predict the weather for the next 48
hours is unreasonable to say the least.

Parallel processing makes it possible to predict the weather not only faster but
also more accurately. If we have a parallel computer with a thousand workstation-

