THEORY AND PRACTICE

SOFTWARE ENGINEERING
THEORY AND PRACTICE

SECcOND EDITION

Shari Lawrence Pfleeger

An Alan R. Apt Book

|
|

Prentice Hall
Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Pfleeger, Shari Lawrence.
Software Engineering : theory and practice / Shari Lawrence Pfleeger.--[2nd ed.].
p. cm.
Includes bibliographical references and index.
ISBN 0-13-029049-1
1. Software engineering. I.Title.

QA76.758.P49 2001

005.1--DC21
00-051674

Vice President and Editorial Director, ECS: Marcia J. Horton
Publisher: Alan R. Apt

Associate Editor: Toni D. Holm

Vice President and Director of Production and Manufacturing, ESM: David Riccardi
Executive Managing Editor: Vince O’Brien

Managing Editor: David A. George

Production Editor: Scott Disanno

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director: Heather Scott

Art Editor: Adam Velthaus

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Pat Brown

Senior Marketing Manager: Jennie Burger

Editorial Assistant: Amy K. Todd

Prentice © 2001 by Prentjce-Hall, Inc.
IEENIM Pcarson Education
s Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permis-
sion in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher make no warranty of any kind, expressed or implied, with regard to these pro-
grams or the documentation contained in this book. The author and publisher shall not be liable in any event
for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or
use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4

ISBN 0-13-029049-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

From so much loving and journeying, books emerge.
Pablo Neruda

To Florence Rogart for lighting the flame;
to Norma Mertz for helping to keep it burning.

Preface

BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE

Software engineering has come a long way since 1968, when the term was first used at
a NATO conference. And software itself has entered our lives in ways that few had an-
ticipated, even a decade ago. So a firm grounding in software engineering theory and
practice is essential for understanding how to build good software and for evaluating the
risks and opportunities that software presents in our everyday lives. This text represents
the blending of the two current software engineering worlds: that of the practitioner,
whose main focus is to build high-quality products that perform useful functions, and that
of the researcher, who strives to find ways to improve the quality of products and the
productivity of those who build them.

Designed for an undergraduate software engineering curriculum, this book paints
a pragmatic picture of software engineering research and practices. Examples speak to
a student’s limited experience but illustrate clearly how large software development
projects progress from need to idea to reality.

The book is also suitable for a graduate course offering an introduction to software
engineering concepts and practices, or for practitioners wishing to expand their knowl-
edge of the subject. It includes examples that represent the many situations readers are
likely to experience: large projects and small, object-oriented and procedural, real-time
and transaction processing, development and maintenance. In particular, Chapters 12,
13,and 14 present thought-provoking material designed to interest graduate students in
current research topics.

KEY FEATURES
This text has many key features that distinguish it from other books.

e Unlike other software engineering books that consider measurement a separate
issue, this book blends measurement with software engineering. Measurement is-
sues are considered as an integral part of software engineering strategy, rather
than as a separate discipline. This approach shows students how to involve quan-
titative assessment and improvement in their daily activities. They can evaluate
their progress on an individual, team, and project basis.

e Similarly, concepts such as reuse, risk management, and quality engineering are
embedded in the software engineering activities that are affected by them, instead
of treating them as separate issues.

* Each chapter applies its concepts to two common examples: one that represents
a typical information system, and another that represents a real-time system. Both

v

vi

Preface

examples are based on actual projects. The information system example describes
the software needed to determine the price of advertising time for a large British
television company. The real-time system is the control software for the Ariane-5
rocket; we look at the problems reported, and explore how software engineering
techniques could have helped to locate and avoid some of them. Students can fol-
low the progress of two typical projects, seeing how the various practices described
in the book are merged into the technologies used to build systems.

At the end of every chapter, the results are expressed in three ways: what the content
of the chapter means for development teams, what it means for individual develop-
ers, and what it means for researchers. The student can easily review the highlights of
each chapter and see the chapter’s relevance to both research and practice.

The book has an associated Web page, containing current examples from the lit-
erature, links to Web pages for relevant tool and method vendors, and a study
guide for students. It is on the Web that students can find real requirements doc-
uments, designs, code, test plans, and more, so they can see real software engi-
neering project artifacts. Students seeking additional in-depth information are
pointed to reputable accessible publications and Web sites. The Web pages are up-
dated regularly to keep the material in the textbook current and include a facili-
ty for feedback to the author and the publisher.

The book is replete with case studies and examples from the literature. Many of
the one-page case studies shown as sidebars in the book are expanded on the Web
page. The student can see how the book’s theoretical concepts are applied to real-
life situations.

Each chapter ends with thought-provoking questions about legal and ethical issues
in software engineering. Students see software engineering in its social and polit-
ical contexts. As with other sciences, software engineering decisions must be viewed
in terms of the people their consequences will affect.

Every chapter addresses both procedural and object-oriented development. In ad-
dition, a new chapter on object-oriented development explains the steps of an ob-
ject-oriented development process. Using UML for common notation, each step
is applied to a common example, from requirements specification through pro-
gram design. i}

The book has an annotated bibliography that points to many of the seminal papers
in software engineering. In addition, the Web page points to annotated bibliogra-
phies and discussion groups for specialized areas, such as software reliability, fault
tolerance, computer security, and more.

The book has a solutions manual, available from Prentice Hall, as are PowerPoint
slides with the figures, tables, and sample instructional slides.

Each chapter includes a description of a term project, involving development of
software for a mortgage processing system. The instructor may use this term pro-
ject, or a variation of it, in class assignments.

Each chapter ends with a list of key references for the concepts in the chapter, en-
abling students to find in-depth information about particular tools and methods dis-
cussed in the chapter.

Preface vii

CONTENTS AND ORGANIZATION

This text is organized in three parts. The first part (Chapters 1 to 3) motivates the read-
er, explaining why knowledge of software engineering is important to practitioners and
researchers alike. Part I also discusses the need for understanding process issues and
for doing careful project planning. Part II (Chapters 4 to 11) walks through the major
steps of development and maintenance, regardless of the process model used to build
the software: eliciting and checking the requirements, designing a solution to the problem,
writing and testing the code, and turning it over to the customer. Part III (Chapters 12 to
14) focuses on evaluation and improvement. It looks at how we can assess the quality
of our processes and products, and how to take steps to improve them.

Chapter 1: Why Software Engineering?

In this chapter we address our track record, motivating the reader and highlighting
where in later chapters certain key issues are examined. In particular, we look at Wasser-
man’s key factors that help define software engineering: abstraction, analysis and design
methods and notations, modularity and architecture, software life cycle and press, reuse,
measurement, tools and integrated environments, and user interface and prototyping. We
discuss the difference between computer science and software engineering, explaining
some of the major types of problems that can be encountered, and laying the ground-
work for the rest of the book. We also explore the need to take a systems approach to
building software, and we introduce the two common examples that will be used in every
chapter. We also introduce the context for the term project.

Chapter 2: Modeling the Process and Life Cycle

In this chapter, we present an overview of different types of process and life-cycle mod-
els, including the waterfall model, the V-model, the spiral model, and various prototyp-
ing models. We also describe several modeling techniques and tools, including systems
dynamics, SADT, and other commonly-used approaches. Each of the two common ex-
amples is modeled in part with some of the techniques introduced here.

Chapter 3: Planning and Managing the Project

Here, we look at project planning and scheduling. We introduce notions such as ac-
tivities and milestones, work breakdown structure, activity graphs, risk management,
and costs and cost estimation. Estimation models are used to estimate the cost and
schedule of the two common examples. We focus on actual case studies, including man-
agement of software development for the F-16 airplane and for Digital’s alpha AXP
programs.

Chapter 4: Capturing the Requirements

In this chapter, we look at requirements analysis and specification. We explain the dif-
ference between functional and nonfunctional requirements, present several ways to

viii

Preface

describe different kinds of requirements, and discuss how to prototype requirements. We
see how several types of formal methods can be used in specifying and evaluating re-
quirements. Other topics discussed include requirements documentation, requirements
reviews, requirements quality and how to measure it, requirements testability, and how
to select a specification method. The chapter ends with application of some of the meth-
ods to the two common examples.

Chapter 5: Designing the System

This chapter focuses on architectural issues, and we begin by discussing Shaw and Gar-
lan’s framework for software architecture. Next, we describe the difference between
the conceptual design and the technical design. We discuss the roles of the personnel
who perform the design and describe two basic approaches to design: composition
and decomposition. Then, we identify characteristics of good design, introduce sever-
al design strategies, and give examples of several system design techniques and tools.
It is in this chapter that the reader learns about client-server architecture, reusable
design components, human-computer interface design, design for secure and reliable
systems (including error handling and fault tolerance), design patterns, formal design
methods, and how to assess design trade-offs. After explaining how to evaluate and val-
idate the quality of a design, and how to document the results, we turn to issues of
program design.

Program design guidelines are explained, including top-down versus bottom-up,
modularity and independence, and the difference between logical and physical design.
We look at design for concurrency and for safety-critical systems, and we examine the
design flaws that led to the Therac-25 malfunctions. We describe several design tools, and
there is a thorough discussion of design quality and how to measure it. The chapter in-
troduces design reuse, reviews, and inspections and explains the need to document de-
sign rationale. Finally, the chapter ends with examples of design for the information
system and real-time examples.

Chapter 6: Concerning Objects

Chapter 6 takes a detour to consider the special properties of object-oriented devel-
opment. We begin by describing use case scenarios, discussing how to capture objects
and their characteristics from the natural language requirements. Next, we examine sys-
tem design, to see how to generate the high-level information needed to find a solu-
tion. We then enrich the system design, adding nonfunctional requirements and details
required in the program design. Employing UML and its constructs, we generate an
object-oriented specification and design for a common example, the Royal Service
Station.

Taking a careful look at object-oriented measurement, we apply some of the
common object-oriented metrics to the service station example. We note how to use
changes in the metrics to help us decide how to allocate resources and search for faults.
Finally, we apply object-oriented concepts to our information systems and real-time
examples.

Preface ix

Chapter 7: Writing the Programs

In this chapter, we address issues in implementing the design to produce high-quality
code. We discuss standards and procedures and suggest some simple programming guide-
lines. Examples are provided in a variety of languages, including both object-oriented and
procedural. There are thorough discussions of the need for program documentation and
an error-handling strategy, and the chapter ends by applying some of the concepts to the
two common examples.

Chapter 8: Testing the Programs

In this chapter, we explore several aspects of testing programs. We distinguish conven-
tional testing approaches from the cleanroom method, and we look at how to test a va-
riety of systems. We present definitions and categories of software problems, and we
discuss how orthogonal defect classification can make data collection and analysis more
effective. We then explain the difference between unit testing and integration testing.
After introducing several automated test tools and techniques, we explain the need for
a testing life cycle and how the tools can be integrated into it. Finally, the chapter applies
these concepts to the two common examples.

Chapter 9: Testing the System

We begin with principles of system testing, including reuse of test suites and data, and
the need for careful configuration management. Concepts introduced include function
testing, performance testing, acceptance testing, and installation testing. We look at the
special needs of testing object-oriented systems. Several test tools are described, and
the roles of test team members are discussed. Next, we introduce the reader to soft-
ware reliability modeling, and issues of reliability, maintainability, and availability are
discussed. The reader learns how to use the results of testing to estimate the likely
characteristics of the delivered product. The several types of test documentation are
introduced, too, and the chapter ends by describing the test strategies of the two
common examples.

Chapter 10: Delivering the System

This chapter discusses the need for training and documentation and presents several
examples of training and documents that could accompany the information system and
real-time examples.

Chapter 11: Maintaining the System

In this chapter, we address the results of system change. We explain how changes can
occur during the system’s life cycle, and how system design, code, test process, and doc-
umentation must accommodate them. Typical maintenance problems are discussed, as
well as the need for careful configuration management. There is a thorough discussion

X

Preface

of the use of measurement to predict likely changes, and to evaluate the effects of change.
We look at reengineering and restructuring in the overall context of rejuvenating lega-
cy systems. Finally, the two common examples are evaluated in terms of the likelihood
of change.

Chapter 12: Evaluating Products, Processes, and Resources

Since many software engineering decisions involve the incorporation and integration of
existing components, this chapter addresses ways to evaluate processes and products. It
discusses the need for empirical evaluation and gives several examples to show how
measurement can be used to establish a baseline for quality and productivity. We look
at several quality models, how to evaluate systems for reusability, how to perform post-
mortems, and how to understand return on investment in information technology. These
concepts are applied to the two common examples.

Chapter 13: Improving Predictions, Products, Processes, and Resources

This chapter builds on Chapter 11 by showing how prediction, product, process, and re-
source improvement can be accomplished. It contains several in-depth case studies to
show how prediction models, inspection techniques, and other aspects of software en-
gineering can be understood and improved using a variety of investigative techniques.
This chapter ends with a set of guidelines for evaluating current situations and identi-
tying opportunities for improvement.

Chapter 14: The Future of Software Engineering

In this final chapter, we look at several open issues in software engineering. We revisit
Wasserman'’s concepts to see how well we are doing as a discipline. In addition, we ex-
amine several issues in technology transfer and decision-making to determine if we do
a good job at moving important ideas from research to practice.

ACKNOWLEDGMENTS

Books are written as friends and family provide technical and emotional support. It
is impossible to list here all those who helped to sustain me during the writing and re-
vising, and I apologize in advance for any omissions. Carolyn Seaman (University of
Maryland—Baltimore Campus) was a terrific reviewer, suggesting ways to clarify and
simplify, and helping me to produce a tighter, more understandable text. She also pre-
pared most of the solutions to the exercises and helped to set up the book’s Web site. I
am grateful for her friendship and assistance. Forrest Shull (Fraunhofer Center) has up-
dated the solutions manual to reflect new exercises and material. Yiging Liang has gra-
ciously scrubbed the Web site for bad links and has added new material. Carla Valle of
the Federal University of Rio de Janeiro has also updated the Web site and will contin-
ue to add substantial new material.

I am particularly indebted to Guilherme Travassos (Federal University of Rio
de Janeiro) for the use of material that we developed together at the University of
Maryland—College Park, and that he enriched and expanded considerably for use in

Preface xi

subsequent classes. Likewise, I am grateful to Manny Lawrence, the manager of the real
Royal Service Station, and to his bookkeeper Bea Lawrence not only for working with
me and my students on the specification of the Royal system, but also for their affection
and guidance in their other job: as my parents.

Helpful and thoughtful reviewers for both editions included Barbara Kitchenham
(Keele University, UK), Bernard Woolfolk (Lucent Technologies), Ana Regina Caval-
canti da Rocha (Federal University of Rio de Janeiro), Frances Uku (University of Cal-
ifornia at Berkeley), Lee Scott Ehrhart (MITRE), Laurie Werth (University of Texas),
Vickie Almstrum (University of Texas), Lionel Briand (Carleton University, Ottawa),
Steve Thibaut (University of Florida), Lee Wittenberg (Kean College of New Jersey),
and several anonymous reviewers provided by Prentice Hall. Discussions with Greg
Hislop (Drexel University), John Favaro (Intecs Sistemi, Italy), Filippo Lanubile (Uni-
versita di Bari, Italy), John d’Ambra (University of New South Wales, Australia), Chuck
Howell (MITRE), and James and Suzanne Robertson (Atlantic Systems Guild, UK)
led to many improvements and enhancements.

I owe a huge thank you to Forrest Shull (Fraunhofer Center—Maryland) and
Roseanne Tesoriero (Catholic University of America), who developed the study guide
for this book. And I salute John Gannon (University of Maryland—College Park)
posthumously, for his convictions, encouragement, and the legacy he has left to all of us
in software engineering.

Particular thanks go to Katharita Lamoza, Sondra Chavez, and Alan Apt, who
made the first edition of the book’s production interesting and relatively painless. Thanks
too to James and Suzanne Robertson for the use of the Piccadilly example, and to Nor-
man Fenton for the use of material from our software metrics book. Scott Disanno, Amy
Todd, Alan Apt, Jake Warde and Toni Holm were wonderful in helping the second edi-
tion come to life.

Many thanks to the publishers of several of the figures and examples for granting
permission to reproduce them here.

The material from Complete Systems Analysis (Robertson and Robertson 1994) is
drawn from Dorset House Publishing, at www.dorsethouse.com. All rights reserved.

The article in exercise 1.1 is reproduced from the Washington Post with permission
from the Associated Press. Figures 2.15 and 2.16 are reproduced from Barghouti et al.
(1995) by permission of John Wiley and Sons Limited. Figures 12.14 and 12.15 are re-
produced from Rout (1995) by permission of John Wiley and Sons Limited.

Figures and tables in Chapters 2,3,4,5,9,11, and 12 that are noted with an IEEE
copyright are reprinted with permission of the Institute of Electrical and Electronics
Engineers. Table 2.1 and Figure 2.11 from Lai (1991) are reproduced with permission
from the Software Productivity Consortium. Figures 8.16 and 8.17 from Graham (1996a)
are reprinted with permission from Dorothy R. Graham. Figure 12.11 and Table 12.2
are adapted from Liebman (1994) with permission from the Centre for Science in the
Public Interest, 1875 Connecticut Avenue NW, Washington DC. Tables 8.2, 8.3, 8.5, and
8.6 are reproduced with permission of the McGraw-Hill Companies. Figures and ex-
amples from Shaw and Garland (1996), Card and Glass (1990), Grady (1997), and Lee
and Tepfenhart (1997) are reproduced with permission from Prentice Hall.

Tables 9.3,9.4,9.6,9.7,13.1,13.2,13.3, and 13.4, as well as Figures 1.15,9.7,9.8,9.9,
9.14,13.1,13.2,13.3,13.4, 13.5,13.6, and 13.7 are reproduced or adapted from Fenton

and Pfleeger (1997) in whole or in part with permission from Norman Fenton. Figures
3.16,5.19,and 5.20 are reproduced or adapted from Norman Fenton’s course notes, with
his kind permission

I am grateful to Sonya Smith, Deborah Cooper and Pat Ehlers for their under-
standing and patience. And, as always, Charles Pfleeger was a constant and much-
appreciated source of support and encouragement.

Shari Lawrence Pfleeger
Washington, DC

About the Author

Shari Lawrence Pfleeger is president of Systems/Software, Inc., a consultancy specializ-
ing in software engineering and technology. In the past, she has been a member of the
University of Maryland’s Computer Science Department, founder and director of
Howard University’s Center for Research in Evaluating Software Technology (CREST),
a visiting scientist at the City University (London) Centre for Software Reliability, prin-
cipal scientist at MITRE Corporation’s Software Engineering Center, and manager of
the measurement program at the Contel Technology Center. Thus, she has experience
both with the practical problems of software development and the theoretical under-
pinnings of software engineering and computer science. Pfleeger is well-known for her
work in empirical studies of software engineering.

Dr. Pfleeger has been associate editor-in-chief of /EEE Software, where she edit-
ed the Quality Time column. She is currently associate editor of /EEE Transactions on
Software Engineering. A member of IEEE, the IEEE Computer Society, and the Asso-
ciation for Computing Machinery, Pfleeger has twice been on the executive committee
of the Technical Council on Software Engineering. She was the general chair of the Sec-
ond International Symposium on Software Metrics (in London, England), the program
co-chair of the Fourth International Symposium on software Metrics (in Albuquerque,
New Mexico), and the co-chair of the Fifth Workshop on Empirical Studies of Software
Engineering (Bethesda, Maryland).

Dr. Pfleeger is the author of many books and articles; she has been named re-
peatedly by the Journal of Systems and Software as one of the world’s top software en-
gineering researchers. Among her books are Introduction to Discrete Structures (with
David Straight; Wiley, 1985), Software Engineering: The Production of Quality Software
(Macmillan, 1987 and 1991), Software Metrics: A Rigorous and Practical Approach (with
Norman Fenton; PWS Publishing, 1997) and Applying Software Metrics (with Paul Oman;
IEEE Computer Society Press, 1997).

Xix

Contents

Preface
1 Why Software Engineering? 1
1.1 What Is Software Engineering? 2
1.2 How Successful Have We Been? 5
1.3 What Is Good Software? 9
1.4 Who Does Software Engineering? 14
1.5 A Systems Approach 16
1.6 An Engineering Approach 21
1.7 Members of the Development Team 25
1.8 How Has Software Engineering Changed? 27
1.9 Information Systems Example 36
1.10 Real-Time Example 37
1.11 What This Chapter Means for You 39
1.12 What This Chapter Means for Your Development Team 40
1.13 What This Chapter Means for Researchers 40
1.14 Term Project 40
1.15 Key References 42
1.16 Exercises 43
2 Modeling the Process and Life Cycle 45
2.1 The Meaning of Process 45
2.2 Software Process Models 48
2.3 Tools and Techniques for Process Modeling 59
2.4 Practical Process Modeling 66
2.5 Information System Example 69
2.6 Real-Time Example gl
2.7 What This Chapter Means for You 72
2.8 What This Chapter Means for Your Development Team 72
2.9 What This Chapter Means for Researchers 72
2.10 Term Project 73
2.11 Key References 75
2.12 Exercises 76
3 Planning and Managing the Project 77
3.1 Tracking Progress 77
3.2 Project Personnel 90
3.3 Effort Estimation 99

xiii

Xiv

Contents

34
35
3.6
37
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Risk Management

The Project Plan

Process Models and Project Management
Information System Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers
Term Project

Key References

Exercises

Capturing the Requirements

4.1
42
43
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

The Requirements Process

Types of Requirements

Characteristics of Requirements

How to Express Requirements

Additional Requirements Notations

Prototyping Requirements

Requirements Documentation

Participants in the Requirements Process
Requirements Validation

Measuring Requirements

Choosing a Requirements Specification Technique
Information Systems Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers

Term Project

Key References

Exercises

Designing the System

|
52
53
54
55
5.6
5.7
5.8
5.9
5.10
5.1
512

What Is Design?

Decomposition and Modularity
Architectural Styles and Strategies
Issues in Design Creation
Characteristics of Good Design
Techniques for Improving Design
Design Evaluation and Validation
Documenting the Design
Information System Example
Real-Time Example

What This Chapter Means for You
What This Chapter Means for Your Development Team

114
118
120
128
129
130
131
131
131
132
133

135
136
142
145
147
161
168
170
173
174
176
179
183
185
186
187
187
188
191
192

195
195
198
201
209
220
231
239
248
249
251
252
253

543
5.14
5:15
5.16

Contents

What This Chapter Means for Researchers
Term Project

Key References

Exercises

Concerning Objects

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

What Is OO?

The OO Development Process

Use Cases

Representing OO: An Example Using UML
OO System Design

OO Program Design

OO Measurement

Information Systems Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers
Term Project

Key References

Exercises

Writing the Programs

7.1
ds2
7.3
7.4
7.5
7.6
Tl
7.8
7.9
7.10
7.11

Programming Standards and Procedures
Programming Guidelines

Documentation

Information Systems Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers
Term Project

Key References

Exercises

Testing the Programs

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Software Faults and Failures
Testing Issues

Unit Testing

Integration Testing

Testing Object-Oriented Systems
Test Planning

Automated Testing Tools

When to Stop Testing
Information Systems Example
Real-Time Example

XV

254
254
254
255

257
257
262
265
269
271
286
294
303
304
304
305
305
305
306
306

307
307
310
321
325
327
328
328
329
329
329
330

331
331
337
342
356
363
366
368
371
376
377

xvi

10

1

Contents

8.11
8.12
8.13
8.14
8.15
8.16

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers

Term Project

Key References

Exercises

Testing the System

9.1
9.2
93
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

Principles of System Testing

Function Testing

Performance Testing

Reliability, Availability, and Maintainability
Acceptance Testing

Installation Testing

Automated System Testing

Test Documentation

Testing Safety-Critical Systems
Information Systems Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers
Term Project

Key References

Exercises

Delivering the System

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Training

Documentation

Information Systems Example

Real-Time Example

What This Chapter Means for You

What This Chapter Means for Your Development Team
What This Chapter Means for Researchers

Term Project

Key References

10.10 Exercises

Maintaining the System

14,1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

The Changing System

The Nature of Maintenance
Maintenance Problems

Measuring Maintenance Characteristics
Maintenance Techniques and Tools
Software Rejuvenation

Information Systems Example
Real-Time Example

What This Chapter Means for You

378
378
379
379
379
380

383
383
396
401
403
412
415
415
417
427
438
440
441
442
442
443
443
443

448
453
460
461
461
461
462
462
462
463

464
472
475
483
488
496
503
503
504

