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Preface

BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE

Software engineering has come a long way since 1968, when the term was first used at
a NATO conference. And software itself has entered our lives in ways that few had an-
ticipated, even a decade ago. So a firm grounding in software engineering theory and
practice is essential for understanding how to build good software and for evaluating the
risks and opportunities that software presents in our everyday lives. This text represents
the blending of the two current software engineering worlds: that of the practitioner,
whose main focus is to build high-quality products that perform useful functions, and that
of the researcher, who strives to find ways to improve the quality of products and the
productivity of those who build them.

Designed for an undergraduate software engineering curriculum, this book paints
a pragmatic picture of software engineering research and practices. Examples speak to
a student’s limited experience but illustrate clearly how large software development
projects progress from need to idea to reality.

The book is also suitable for a graduate course offering an introduction to software
engineering concepts and practices, or for practitioners wishing to expand their knowl-
edge of the subject. It includes examples that represent the many situations readers are
likely to experience: large projects and small, object-oriented and procedural, real-time
and transaction processing, development and maintenance. In particular, Chapters 12,
13,and 14 present thought-provoking material designed to interest graduate students in
current research topics.

KEY FEATURES
This text has many key features that distinguish it from other books.

e Unlike other software engineering books that consider measurement a separate
issue, this book blends measurement with software engineering. Measurement is-
sues are considered as an integral part of software engineering strategy, rather
than as a separate discipline. This approach shows students how to involve quan-
titative assessment and improvement in their daily activities. They can evaluate
their progress on an individual, team, and project basis.

e Similarly, concepts such as reuse, risk management, and quality engineering are
embedded in the software engineering activities that are affected by them, instead
of treating them as separate issues.

* Each chapter applies its concepts to two common examples: one that represents
a typical information system, and another that represents a real-time system. Both
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examples are based on actual projects. The information system example describes
the software needed to determine the price of advertising time for a large British
television company. The real-time system is the control software for the Ariane-5
rocket; we look at the problems reported, and explore how software engineering
techniques could have helped to locate and avoid some of them. Students can fol-
low the progress of two typical projects, seeing how the various practices described
in the book are merged into the technologies used to build systems.

At the end of every chapter, the results are expressed in three ways: what the content
of the chapter means for development teams, what it means for individual develop-
ers, and what it means for researchers. The student can easily review the highlights of
each chapter and see the chapter’s relevance to both research and practice.

The book has an associated Web page, containing current examples from the lit-
erature, links to Web pages for relevant tool and method vendors, and a study
guide for students. It is on the Web that students can find real requirements doc-
uments, designs, code, test plans, and more, so they can see real software engi-
neering project artifacts. Students seeking additional in-depth information are
pointed to reputable accessible publications and Web sites. The Web pages are up-
dated regularly to keep the material in the textbook current and include a facili-
ty for feedback to the author and the publisher.

The book is replete with case studies and examples from the literature. Many of
the one-page case studies shown as sidebars in the book are expanded on the Web
page. The student can see how the book’s theoretical concepts are applied to real-
life situations.

Each chapter ends with thought-provoking questions about legal and ethical issues
in software engineering. Students see software engineering in its social and polit-
ical contexts. As with other sciences, software engineering decisions must be viewed
in terms of the people their consequences will affect.

Every chapter addresses both procedural and object-oriented development. In ad-
dition, a new chapter on object-oriented development explains the steps of an ob-
ject-oriented development process. Using UML for common notation, each step
is applied to a common example, from requirements specification through pro-
gram design. i}

The book has an annotated bibliography that points to many of the seminal papers
in software engineering. In addition, the Web page points to annotated bibliogra-
phies and discussion groups for specialized areas, such as software reliability, fault
tolerance, computer security, and more.

The book has a solutions manual, available from Prentice Hall, as are PowerPoint
slides with the figures, tables, and sample instructional slides.

Each chapter includes a description of a term project, involving development of
software for a mortgage processing system. The instructor may use this term pro-
ject, or a variation of it, in class assignments.

Each chapter ends with a list of key references for the concepts in the chapter, en-
abling students to find in-depth information about particular tools and methods dis-
cussed in the chapter.
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CONTENTS AND ORGANIZATION

This text is organized in three parts. The first part (Chapters 1 to 3) motivates the read-
er, explaining why knowledge of software engineering is important to practitioners and
researchers alike. Part I also discusses the need for understanding process issues and
for doing careful project planning. Part II (Chapters 4 to 11) walks through the major
steps of development and maintenance, regardless of the process model used to build
the software: eliciting and checking the requirements, designing a solution to the problem,
writing and testing the code, and turning it over to the customer. Part III (Chapters 12 to
14) focuses on evaluation and improvement. It looks at how we can assess the quality
of our processes and products, and how to take steps to improve them.

Chapter 1: Why Software Engineering?

In this chapter we address our track record, motivating the reader and highlighting
where in later chapters certain key issues are examined. In particular, we look at Wasser-
man’s key factors that help define software engineering: abstraction, analysis and design
methods and notations, modularity and architecture, software life cycle and press, reuse,
measurement, tools and integrated environments, and user interface and prototyping. We
discuss the difference between computer science and software engineering, explaining
some of the major types of problems that can be encountered, and laying the ground-
work for the rest of the book. We also explore the need to take a systems approach to
building software, and we introduce the two common examples that will be used in every
chapter. We also introduce the context for the term project.

Chapter 2: Modeling the Process and Life Cycle

In this chapter, we present an overview of different types of process and life-cycle mod-
els, including the waterfall model, the V-model, the spiral model, and various prototyp-
ing models. We also describe several modeling techniques and tools, including systems
dynamics, SADT, and other commonly-used approaches. Each of the two common ex-
amples is modeled in part with some of the techniques introduced here.

Chapter 3: Planning and Managing the Project

Here, we look at project planning and scheduling. We introduce notions such as ac-
tivities and milestones, work breakdown structure, activity graphs, risk management,
and costs and cost estimation. Estimation models are used to estimate the cost and
schedule of the two common examples. We focus on actual case studies, including man-
agement of software development for the F-16 airplane and for Digital’s alpha AXP
programs.

Chapter 4: Capturing the Requirements

In this chapter, we look at requirements analysis and specification. We explain the dif-
ference between functional and nonfunctional requirements, present several ways to
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describe different kinds of requirements, and discuss how to prototype requirements. We
see how several types of formal methods can be used in specifying and evaluating re-
quirements. Other topics discussed include requirements documentation, requirements
reviews, requirements quality and how to measure it, requirements testability, and how
to select a specification method. The chapter ends with application of some of the meth-
ods to the two common examples.

Chapter 5: Designing the System

This chapter focuses on architectural issues, and we begin by discussing Shaw and Gar-
lan’s framework for software architecture. Next, we describe the difference between
the conceptual design and the technical design. We discuss the roles of the personnel
who perform the design and describe two basic approaches to design: composition
and decomposition. Then, we identify characteristics of good design, introduce sever-
al design strategies, and give examples of several system design techniques and tools.
It is in this chapter that the reader learns about client-server architecture, reusable
design components, human-computer interface design, design for secure and reliable
systems (including error handling and fault tolerance), design patterns, formal design
methods, and how to assess design trade-offs. After explaining how to evaluate and val-
idate the quality of a design, and how to document the results, we turn to issues of
program design.

Program design guidelines are explained, including top-down versus bottom-up,
modularity and independence, and the difference between logical and physical design.
We look at design for concurrency and for safety-critical systems, and we examine the
design flaws that led to the Therac-25 malfunctions. We describe several design tools, and
there is a thorough discussion of design quality and how to measure it. The chapter in-
troduces design reuse, reviews, and inspections and explains the need to document de-
sign rationale. Finally, the chapter ends with examples of design for the information
system and real-time examples.

Chapter 6: Concerning Objects

Chapter 6 takes a detour to consider the special properties of object-oriented devel-
opment. We begin by describing use case scenarios, discussing how to capture objects
and their characteristics from the natural language requirements. Next, we examine sys-
tem design, to see how to generate the high-level information needed to find a solu-
tion. We then enrich the system design, adding nonfunctional requirements and details
required in the program design. Employing UML and its constructs, we generate an
object-oriented specification and design for a common example, the Royal Service
Station.

Taking a careful look at object-oriented measurement, we apply some of the
common object-oriented metrics to the service station example. We note how to use
changes in the metrics to help us decide how to allocate resources and search for faults.
Finally, we apply object-oriented concepts to our information systems and real-time
examples.
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Chapter 7: Writing the Programs

In this chapter, we address issues in implementing the design to produce high-quality
code. We discuss standards and procedures and suggest some simple programming guide-
lines. Examples are provided in a variety of languages, including both object-oriented and
procedural. There are thorough discussions of the need for program documentation and
an error-handling strategy, and the chapter ends by applying some of the concepts to the
two common examples.

Chapter 8: Testing the Programs

In this chapter, we explore several aspects of testing programs. We distinguish conven-
tional testing approaches from the cleanroom method, and we look at how to test a va-
riety of systems. We present definitions and categories of software problems, and we
discuss how orthogonal defect classification can make data collection and analysis more
effective. We then explain the difference between unit testing and integration testing.
After introducing several automated test tools and techniques, we explain the need for
a testing life cycle and how the tools can be integrated into it. Finally, the chapter applies
these concepts to the two common examples.

Chapter 9: Testing the System

We begin with principles of system testing, including reuse of test suites and data, and
the need for careful configuration management. Concepts introduced include function
testing, performance testing, acceptance testing, and installation testing. We look at the
special needs of testing object-oriented systems. Several test tools are described, and
the roles of test team members are discussed. Next, we introduce the reader to soft-
ware reliability modeling, and issues of reliability, maintainability, and availability are
discussed. The reader learns how to use the results of testing to estimate the likely
characteristics of the delivered product. The several types of test documentation are
introduced, too, and the chapter ends by describing the test strategies of the two
common examples.

Chapter 10: Delivering the System

This chapter discusses the need for training and documentation and presents several
examples of training and documents that could accompany the information system and
real-time examples.

Chapter 11: Maintaining the System

In this chapter, we address the results of system change. We explain how changes can
occur during the system’s life cycle, and how system design, code, test process, and doc-
umentation must accommodate them. Typical maintenance problems are discussed, as
well as the need for careful configuration management. There is a thorough discussion
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of the use of measurement to predict likely changes, and to evaluate the effects of change.
We look at reengineering and restructuring in the overall context of rejuvenating lega-
cy systems. Finally, the two common examples are evaluated in terms of the likelihood
of change.

Chapter 12: Evaluating Products, Processes, and Resources

Since many software engineering decisions involve the incorporation and integration of
existing components, this chapter addresses ways to evaluate processes and products. It
discusses the need for empirical evaluation and gives several examples to show how
measurement can be used to establish a baseline for quality and productivity. We look
at several quality models, how to evaluate systems for reusability, how to perform post-
mortems, and how to understand return on investment in information technology. These
concepts are applied to the two common examples.

Chapter 13: Improving Predictions, Products, Processes, and Resources

This chapter builds on Chapter 11 by showing how prediction, product, process, and re-
source improvement can be accomplished. It contains several in-depth case studies to
show how prediction models, inspection techniques, and other aspects of software en-
gineering can be understood and improved using a variety of investigative techniques.
This chapter ends with a set of guidelines for evaluating current situations and identi-
tying opportunities for improvement.

Chapter 14: The Future of Software Engineering

In this final chapter, we look at several open issues in software engineering. We revisit
Wasserman'’s concepts to see how well we are doing as a discipline. In addition, we ex-
amine several issues in technology transfer and decision-making to determine if we do
a good job at moving important ideas from research to practice.
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