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Preface

Many articles appearing in the current econometrics literature are inaccessible to students
with a background of one or two semesters in mathematical statistics and an introductory
course in econometrics. Our book bridges the gap between an introductory course and
such journal articles. It presents background material on selected topics in mathematics
and mathematical statistics and provides fairly detailed reviews of three areas of econ-
ometric research. The book is intended for courses that continue beyond an introductory
econometrics course in a theoretical direction. To a great extent, it is keyed to significant
articles in the field to encourage the reading of the original articles.

Part I consists of two chapters that present probabilistic concepts of convergence,
maximum likelihood estimation, asymptotic expansions of probability functions, and
methods of approximating moments. These widely used large sample and approximation
techniques are not adequately covered in most introductory econometrics texts. We present
relationships between plims, asymptotic moments, and moments of limiting distributions.
An introduction to Edgeworth approximations to distribution and density functions is
included, along with a discussion of methods of approximating moments. Although the
material on convergence and maximum likelihood estimation is primarily a review of
topics covered in mathematical statistics and econometrics courses, the discussion of
approximation techniques is likely to be the student’s first exposure to these topics. In
view of their widespread use, particularly in connection with distributions of estimators
of parameters in simultaneous equation models, it is important that students know about
them. Appendixes on order of magnitude (0 and O), complex variables, and characteristic
functions provide necessary background.

Part II consists of three chapters on the analysis of time series models. The first two
of these present the theory and estimation methods for the ARIMA models popularized
by Box and Jenkins. Numerous graphs depict the typical pattern of data generated by
low order autoregressive and moving average models and the autocovariance and partial
autocovariance functions of these models. The fundamental theoretical concepts of sta-
tionarity and invertibility are explained both intuitively and formally. The third chapter
of this part takes up the Zellner-Palm synthesis of time series and standard econometric
simultaneous equation models, and an illustration of the approach is provided. The chapter
concludes with an explanation and a critique of causality tests of the type proposed by
Granger and Sims.

Part III is concerned with estimation, particularly of regression coefficients, under
a mean squared error (quadratic loss function) criterion. After presenting background
material on decision theory concepts and the noncentral x* distribution, we turn to the
mean squared error performance of a number of estimators: ordinary least squares, re-
stricted least squares, James-Stein and variants, preliminary test, double k-class, and ridge
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regression. The emphasis is on analytical results and comparisons of the estimators’
performances. A discussion of the use of these estimators in econometric research is
included.

Part IV examines the estimation of parameters of simultaneous equation models. It
emphasizes topics that are not covered in most introductory textbooks because they require
considerably more mathematical and statistical technique than most econometric students
possess. Appendixes on the ratio of normal variates, the noncentral Wishart distribution,
and hypergeometric and confluent hypergeometric functions provide background material.
The first chapter deals with identification and contains results that generalize the one
equation, linear restriction case that is included in most introductory texts. The next
chapter considers the special case of two included endogenous variables. It derives in
detail the exact distribution of ordinary least squares and two-stage least squares estimators
and the moments of k-class estimators. In addition, references are provided for results
with other estimators, and approximation methods are applied to derive relatively tractable
expressions for distributions and moments. The third chapter presents in detail a theorem
on existence of moments of k-class estimators with an arbitrary number of included
endogenous variables. It also includes a summary of and reference to other topics found
in the current literature.

We are happy to acknowledge Professor Arthur Denzau and the help of several of
our students, who made comments at various stages: Alvin Hsieh, Dosung Chung, Mark
Stover, Blair Harcourt, and Howard Neiman. We also thank Professors R. Carter Hill,
Albert Link, Malcolm Dowling, and Jan Kmenta for their very useful comments on the
project in its early stages, and Professor Jerry Thursby who made many detailed comments
on our completed draft.

Typing was expertly and (usually) cheerfully done by Mary Kastens, Patricia Curtis,
Anne Schroeder, and Candace Schap.

Edward Greenberg
Charles E. Webster, Jr.
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a.b.p. Asymptotically bounded in probability

ACF Autocorrelation function

AR Autoregressive

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

c.f. Characteristic function

C.I. Characteristic root

c.v. Characteristic vector

CLT Central limit theorem

CRLB Cramer-Rao lower bound

d.f. Distribution function

i.i.d. Identically, independently distributed
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LIML Limited information maximum likelihood

MA Moving average

m.g.f. Moment generating function

MLE Maximum likelihood estimator

N.(%) Deleted neighborhood of x; {u: Ju — x| < € and u # x}
o(b,) ““a, = o(b)”’ indicates g, is of smaller order than b,
o) “a, = O(b)” indicates a, is at most of order b,

o,(a) *“Y, = o,(a,)” indicates Y, is of smaller order in probability than q,
O,(a) *‘Y, = Oy(a)”’ indicates Y, is at most of order in probability as a,
OLS Ordinary least squares

PACF Partial autocorrelation function

P[A] Probability of the event A

plim Probability limit

r(A) Rank of matrix A

r.v. Random variable
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SLLN
3SLS
2SLS
WLLN

Functions

arg Z
B(a, b)
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X'*(n, \)

Cov(X)
EX)

F(k, n)
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JFia, b; c; z)
I'(a)
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L(9; x)
L(9; x)
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Ny, %)
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row(V, W)

Var(X)
vec(A)

WS, N)

W3, N, T)

Strong law of large numbers
Three-stage least squares
Two-stage least squares
Weak law of large numbers

Argument of the complex number Z

Beta function

Central x* distribution with k degrees of freedom
Noncentral x* distribution with n degrees of freedom and noncentral-
ity parameter A

Covariance matrix of the random vector X

Expected value of X (scalar or vector)

Central F-distribution with k£ and n degrees of freedom
Confluent hypergeometric function

Hypergeometric function

Gamma function

Information matrix

Imaginary part of the complex number Z
Log-likelihood function

Log-likelihood function evaluated at the maximum likelihood
estimator

Likelihood function
Likelihood function evaluated at the maximum likelihood estimator
Normal distribution with expected value p and variance o°

p-dimensional multivariate normal distribution with expected value
and covariance matrix 3,

Real part of the complex number Z

The 1 X mn vector formed from the m X p matrix Vand the p X n
matrix W as (V,W, V,W, ..., VW), where V, is the ith row of V

Variance of the random variable X

The 1 X mn vector formed from the m X n matrix A as (a;,
a,, . .., a,), where a; is the ith row of A

p-dimensional Wishart distribution with scale matrix 3, and N degrees
of freedom

p-dimensional noncentral Wishart distribution with scale matrix 3,
means sigma matrix 7 and N degrees of freedom
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i. ““x ~ f(x)”’ indicates that the random variable x (scalar or vector)
has the density function f(x).

ii. ““h(x) ~ Za,b,(x), x = ¢’ indicates that Za,d,(x) is an asymp-
totic expansion for A(x) as x — ¢

Convergence almost surely
Convergence in distribution
Convergence in probability
Convergence in quadratic mean
Modulus of the complex number Z
Euclidean norm of vector X; (X'X)"?
T'(a + n)

W:(a+n—l)(a+n—2)...a
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PART |

Topics in Large
Sample Theory and
Approximation Methods

Chapter 1 is primarily a review of convergence concepts used in probability theory and
of the maximum likelihood method of estimation. Chapter 2 illustrates a number of
methods that are used to approximate probability distributions and moments of functions
of random variables.

Although only a few of those topics are extensively used in the remainder of the
book, a basic knowledge of the topics covered in Part I is necessary for understanding
and contributing to current research in econometrics.






CHAPTER 1

A Review of Asymptotic Distribution
Theory and Maximum Likelihood Estimation

We begin our study of asymptotic distribution theory with an examination of sequences
of random variables. Several features of such sequences may be studied: Are there concepts
of convergence which might be applied to random variables (r.v.’s)? Can anything be
said about the behavior of the sequence of corresponding distribution functions, {F;(x)}?
Can anything be said about the sequence of moments, {E(X;)}? Can approximations be
found to complicated distribution functions as T — %? Precise definitions for these con-
cepts and the relationships between them have been extensively studied.

Relevance for econometricians arises from the fact that X; may often be interpreted
as an estimator for some parameter based on a sample size of 7, and the behavior of the
sequence for large T may be regarded as the behavior of the estimator for large sample
sizes. Since it is often easier to investigate the properties of X; for large T than to ascertain
exact (or small sample) distributions, asymptotic concepts have been extensively utilized
in econometrics. The questions of interest are whether X; has any desirable statistical
properties as T increases and, for purposes of establishing confidence intervals or testing
hypotheses, what is the distribution of X; for large T.

In the sections that follow we first examine various convergence concepts, the
relationships between the convergence concepts, and the conditions necessary for a se-
quence of random variables to converge. Using these concepts of convergence we then
present a number of central limit theorems showing the conditions under which a sequence
of random variable converges to a random variable that is normally distributed. In the
final section of this chapter we examine the properties of maximum likelihood estimators
for large sample size.'

1.1 Convergence Concepts

Since several of the convergence concepts discussed in detail below are bewilderingly
similar, some general introductory comments on probability theory may be useful in
understanding the differences between them.? We begin by defining € as the set of all
possible outcomes of an experiment, and w is used to denote a particular outcome. A

'Econometrics texts that treat these topics in some detail are Dhrymes (1970, Chapter 3) and Theil
(1971, Chapter 8).

*Pfeiffer (1978) is an excellent introduction to the basic probability theory used in this book. It
contains the necessary restrictions on the structure of subsets of (} and on the functions that can
be r.v.’s.
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random variable, X(), is a real valued function with domain () that assigns a numerical
value to each outcome. In statistical applications, €} is the sample space, » € €} is a
possible outcome, and X(w) is a numerical value assigned to outcome .

As an example, consider the experiment of repeatedly tossing a coin, where the
possible outcomes are a head (H) or a tail (T). Then each w is an infinite sequence of
H’s and T’s, and Q) is the set of all such sequences. An example of a random variable,
X(w), is the proportion of heads in the first ten tosses, which is computed from the number
of H’s in the first ten positions of w.

More than one function (each of which is a r.v.) may be defined for a value of w.
A sequence of random variables is a sequence of real valued functions, X;(w), . . .,
Xr(w), . . ., each of which has the same o as its argument. For example, returning to
the coin-tossing experiment, X;(w) might be the proportion of heads in one toss, X,(w)
the proportion in two tosses, and Xr(w) the proportion in T tosses. Thus, if ® = {H, T,
T, T, H, H, . . .}, then X|(w) = 1.00, Xy)(w) = .50, X3(w) = .33, X (o) = .25,
X5(w) = .40, and so on. A second example would be to define w as a particular outcome
of gross national product (GNP) now, next year, and into the future. A particular w, say
w*, may refer to a time path of GNP of 85 in period 1, 95 in period 2, 108 in period 3,
and so on. {2 would then refer to all possible time paths of GNP from now into the future.
We could then define a sequence of random variables X(«w) where X; is the average value
of GNP after i periods. Hence, for our particular series we would have X,(w*) = 85,
Xy(w*) = 90, X3(w*) = 96, and so on.

Because it is often of interest to see whether a sequence of random variables con-
verges, we next discuss several senses in which the sequence {X;} may be said to converge.

1.1.1 Convergence Almost Surely (a.s.)’

Before presenting the definition of ‘‘convergence almost surely’’ it is necessary to explain
some notation. Consider the sequence of functions, X;(w), Xx(w), . . . , where each
X (w) is a random variable evaluated at the point w. It may happen that the sequence
{X7(w)} converges to the point X(w) in the sense that, for sufficiently large 7T, the difference
[X;(w) — X(w)| may be made arbitrarily small and remains arbitrarily small (less than
€) as T increases. That is, |XT+,-(w) - X(w)l <efori=0,1,. . .and € > 0. If that
occurs, we write limy,., X7(®) = X(w). This notation is short for the statement: for every
€ > 0, there exists a Ty(e) such that

Xr(w) — X(w) <€, whenever T > Ty(e).
Now consider the set, A, of w for which the convergence takes place,

A = {o: lim X;(w) = X(w)}.
T

The probability of the occurrence of A, P(4), is often expressed as
PA) = PUTim Xr(0) — X(w)| < €].

The first concept of convergence is concerned with P(A):

3This type of convergence is also called ‘‘convergence with probability one.”’
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Definition

Xr(w) converges almost surely to X if Pllimy.. [Xr(w) — X(w)| < €] = 1, for every
€ > 0. This will be denoted by X;(w) > X. X;(w) and X(w) may be scalars or column
vectors; in the latter case, Xr(w) and X(w) will be of the same dimension and [X;(w) — X(w)|
should be interpreted as the Euclidean norm, [X;(w) — X(w)]'[Xr(w) — X(w)]"*. More-
over, X may be either a constant (or vector of constants) or a r.v. (or vector of r.v.’s).

An equivalent definition of convergence a.s. is helpful in understanding the concept.
To develop this, consider the set of w for which convergence fails to take place. X;(w)
does not converge to X(w) if for some € > 0, |X7, (w) — X(w)| > € for at least one i,
no matter how large T is. That is, either [X;. (0) — X(0)| > €or [X7,,(0) — X()| > €
or . . . for every T. For convergence a.s., the set of such w has probability zero.

An example of convergence a.s. is the ‘‘strong law of large numbers’’ (SLLN): Let
{Y:} be a sequence of r.v.’s and {X;} a sequence of partial sums of the ¥;; that is, X, = 1/
T 3, Y. In addition, assume that X = limy,. E(X;) exists and is finite. If
Xr(w) =25 X, the sequence {Y} is said to obey the SLLN. Two theorems that give
sufficient conditions for a sequence of r.v.’s to obey SLLN are next quoted:

Theorem 1.1.1 (Kolmogoroff)

If a sequence of mutually independent variables {Y;} satisfies

v

s
n=1

then it obeys the SLLN.

Proof

See Gnedenko (1973, p. 215). O

Theorem 1.1.2

The existence of E(Y)) is a necessary and sufficient condition for applying the SLLN to
{Y}, where {Y} is a sequence of identically distributed and mutually independent r.v.’s.

Proof
See Gnedenko (1973, p. 216). 0

Another example of convergence a.s. is provided by the following:
Let X ~ N(O, 1) and

1
XT=X+’Y_,'
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Since X, — X = U/T, it is clear that |X;(0) — X(w)| < € for every T such that 1/T < e.
Therefore, the set {w: lim|X;(w) — X(w)| > €} is empty. Since the empty set has prob-
ability zero, we have X; = X.

At the risk of belaboring the point, assume « is an outcome of an experiment which
generates a value from a N(0, 1) variable, X(w). If X;(w) = X(w) + /T, a particular
outcome, w, determines X(w), and then X;(w) is determined simply by adding 1/7.
Therefore, as T becomes large, |X,(w) — X(w)| becomes very small: X;(w) and X(w) are
virtually the same random variable for large enough T; thus X-(w) — X(w), where the
latter is a r.v.

Convergence a.s. is a strong convergence concept—any sequence of r.v.’s that
converges a.s. also converges ‘‘in probability’’ and ‘‘in distribution,”’ two types of
convergence discussed below. Since convergence a.s. is a strong property, rather stringent
sufficient conditions must be placed on the r.v. to achieve it. Perhaps to avoid such
restrictive assumptions, econometricians have preferred to work with the weaker types
of convergence discussed in the following sections.

1.1.2 Convergence in Probability
Definition

The sequence of r.v.’s {X;} converges in probability to zero if for all € > 0,
limy.,.. P[|X;| > €] = 0. X; may be a scalar or a vector; if the latter, the convergence
is to the zero vector of suitable dimension. This type of convergence will be denoted by
Xr > 0. An equivalent definition is that X; converges in probability to zero if for all
€>0and d >0, P[IX;| <€ =1 — & for sufficiently large 7.

For this type of convergence we consider the set of points {w: [Xr(w)| > €} and its
probability. To satisfy the definition there must exist a value of T, say T, such that for
T > T, Pl{w: [Xr(w)| > €}] is arbitrarily small. Convergence in probability implies that
for T > Tq, each of the sets of w (events), {w: [Xo| > €}, {©: [Xo,y| > €}, . . ., have
arbitrarily small probabilities, but not that the probability of the union of these events is
arbitrarily small. The latter, as we have seen, is the definition of convergence a.s. To
see the relationship between convergence a.s. and convergence in probability, define
Sie = {0 [X¢4i(®) > €} and assume that X; —=> 0. Then there exists a T, such that
PlS U S, U- -+ Sy, U---]<38. Butsince the probability of the union of a set of
events is greater than or equal to the probability of any of the individual events, we must
also have P[S; ] < 8; hence there exists a T, that makes P[|X(w)| > €] < &. This proves
the following theorem.

Theorem 1.1.3
Convergence a.s. implies convergence in probability.
We next provide an example showing that the converse is not true. Although the

example is rather difficult, it should be studied to appreciate the difference between the
two convergence concepts. This example is a probabilistic interpretation of a standard



