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Foreword

This book, by Debabrata Basu, is novel and valuable in several different
ways. In this work, the author offers a quality introduction and review of
important analytical methods and tools in Part I, and in Part II applies
them to an important set of Lie groups presenting them in a modern ana-
lytical language that also makes close contact with the language of the well
known coherent states. The author effectively uses numerous examples to
guide the reader to an ever increasing appreciation of the analytical methods
he discusses. As such, this first part already serves as a useful summary of
basic fundamental analytical notions. The second part dealing with several
examples of locally compact groups offers the reader a smooth introduction
into this basic and very important territory. I am pleased to congratulate
the author for his significant contribution to this general subject matter.

John Klauder

Gainesville, Florida
January 15, 2009

vii



Preface

During the past few decades analytical methods are being increasingly
applied to group representation theory which primarily developed as a
branch of algebra in the hands of Frobinius and Schiir. Although the appli-
cation of analytical methods is now the standard approach in Lie groups
there is as yet no standard textbook dealing with classical and modern
analysis as applied especially to locally compact groups.

It is expected that this gap will be bridged by this book which is essen-
tially an amplification of the lectures of the author to M.Sc. students of
the Physics Department of Indian Institute of Technology, Kharagpur. For
clarity many standard topics in this book have been treated in a way which
substantially differs from traditional treatment and is in a more teachable
form.

The author himself does not understand the sophistry of pure math-
ematics and those who look for elegance and rigour will be sorely disap-
pointed. The book does not provide the most general topological definition
of Lie groups, not that the author is unwilling to learn it, but that it
is deemed inessential in a preliminary course which this book intends to
cover. In a sense, following Ivan Karamazov, discussions are all conducted
“as stupidly as possible...” because “the stupider, the more to the point.
The stupider, the clearer. Stupidity is brief and artless but intelligence
shifts and shuffles and hides itself. Intelligence is a knave, while stupidity
is straightforward and honest.”

Even a casual reader browsing through this book will not fail to notice
the indebtedness of the author to the Russian masters of functional anal-
ysis and representation theory. Of course, this does not come anywhere
near their magnum opus in depth, breadth of coverage and originality; it is
only a modest endeavour to make accessible to the graduate students the
fundamentals of the subject created by them.

The first eight chapters of this book may be covered in any tradi-
tional graduate course in mathematical physics. In particular later parts
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of Chapter 8 supplies the mathematical framework of the octet model of
Gell-Mann and Neéman which is the foundation of the present day quark
model, an inseparable part of standard model. The remaining three chapters
deal with infinite dimensional representations of the simplest locally com-
pact groups, namely, SL(2, R), SL(2, C) and the Heisenberg—Weyl group.
They are becoming increasingly important in several areas of quantum
optics and quantum gravity.

The references at the end of each chapter are those that have been
consulted by the author and are a reflection of personal taste rather than
anything else.

The author would like to thank Professor J. R. Klauder for not only
writing the foreword but also for constructive criticism as well as numerous
conceptual and technical corrections, to say nothing of his excellent review
submitted to the publishers. The author has immensely benefited from col-
laboration with Prof. P. Majumdar of Saha Institute of Nuclear Physics,
Kolkata in the SERC Winter School held at Benares in several sections of
Chapters 8. Finally the author would like to express his heartfelt affection
and admiration for the students of Indian Institute of Technology, Kharag-
pur, who are the main inspiration of this endeavour.

Debabrata Basu
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PART I

Analysis

The first two chapters are of an introductory nature and provide a brief
survey of the process of analysis. They touch upon only the most essential
points leading to the residue theorem and its applications to the evalua-
tion of definite integrals. The power and scope of this apparently simple
theorem has been amply demonstrated in later chapters where it has been
employed in the problem of analytic continuation of the hypergeometric
series (Chapter 4) on the one hand and in the Clebsch-Gordan problem of
SL(2,R) (Chapter 9) on the other.
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