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Computation and Complexity in Economic
Behavior and Organization

This book presents amodel of computing and a measure of computational com-
plexity that are intended to facilitate the analysis of computations performed
by people, machines, or a mixed system of people and machines. The model
is designed to apply directly to models of economic theory, which typically in-
volve continuous variables and smooth functions, without requiring an analy-
sis of approximations. The model permits an analysis of the feasibility and
complexity of the calculations required of economic agents in order for them
to arrive at their decisions. The treatment contains applications of the model
to game theory and economics, including a comparison of the complexities
of different solution concepts in certain bargaining games, to the trade-off
between communication and computation in an example of an Edgeworth
Box economy, and to problems of economic organization.
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Additional Praise for Computation and Complexity in Economic Behavior
and Organization

“This book summarizes the research done over the past two decades by these
two pioneers in the theory of bounded rationality in organizations. Anyone
who is trying to model economic agents in an organization, and especially
anyone who is concerned with the processing of information by organization,
will find this an important reference. The models in this book, where agents
are information processors within a network, are significantly richer than the
conventional model of a single boundedly rational agent as a finite automaton.
This approach offers a fresh perspective and tools for modeling computational
complexity in an organization, tools that will be very valuable in capturing
within a model the limited computational capabilities of both individuals and
organizations. The treatment is both insightful and rigorous, making the book
particularly suitable to advanced graduate students and researchers.”

— In-Koo Cho, University of lllinois

“This book opens a challenging new path in the theory of organization. An
organization’s task is to compute a function of certain external variables. A
well-designed organization does so quickly. It breaks the task into subtasks,
each requiring a unit of time to complete, with the result becoming an input
for a higher subtask. Some of the subtasks can be performed simultaneously.
The challenge is to arrange the subtasks in a network so as to minimize the
total elapsed time until the full task is finished. This is a novel and fruitful
way to look at efficient organizations and to compare the difficulty of the tasks
they undertake. Some general results are obtained and they are illustrated in a
rich assortment of examples, including resource-allocating organizations and
games. Contemporary work in the economic theory of organization has many
motives and many approaches. Those who seek to move it in new directions
ought to make a serious study of this book.”

— Thomas Marschak, University of California, Berkeley

“Mount and Reiter overcome the idiosyncratic, problem specific nature of pre-
vious models of computation and complexity by developing an approach based
around the most common building blocks of economic models: real numbers
and smooth functions. On the technical side this powerful innovation opens the
way for the use of classical analysis and algebra in analyzing complexity of
decision-making. At the same time the use of real numbers and smooth func-
tions makes Mount and Reiter’s approach immediately applicable to standard
models in game theory and organizational economics. The detailed examples
in the text allow the applied theorist to see this new approach at work in famil-
iar problems without having to master all the theoretical underpinning of this
powerful new theory.”

- Kieron Meagher, University of New South Wales, Australia
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1 Introduction

1.1. THE MODELING OF COMPUTING AND ECONOMIC AGENTS

This book presents a model of computing, called the modular network model,
and a measure of complexity, intended to apply to computations performed by
a mixed system of people and machines. Applications of the model to problems
in game theory and economics are also presented.

The model has two primitives: a set, usually denoted F of elementary func-
tions or elementary operations, and a set of directed graphs. The modeler can
choose the set of elementary operations to fit the problem at hand. It is assumed
that an elementary operation is carried out in one unit of time. Every com-
putation is described as a superposition of elementary operations. Choice of
the set of elementary operations permits limitations on computing capabilities
to be expressed formally. It also gives the modeler control over the level of
reduction of analysis. The topology of the directed graph can also be restricted
by the modeler, though in this book we do not do so; instead we assume that
any directed graph is available.

These features facilitate the application of the model to human agents and
to economic models. Parallel and distributed computing and the dispersion
of information among agents are naturally expressed in this model. In each
application the modeler can choose the set of elementary functions to suit the
problem. The class of elementary operations may include functions of real
variables, as well as functions whose domains are discrete sets, as, for instance,
functions defined on strings from a finite alphabet. When the alphabet is finite
and the elementary functions are Boolean, the model is equivalent to the finite-
state automaton model.

Computing with real numbers offers some important advantages in the con-
text of scientific computing (see Blum et al., 1998). It is also relevant to ap-
plications in economic theory. Economic models typically use real variables
and functions of them. A model of computing in which the elementary opera-
tions are functions of real variables allows that model to be directly applied to

1



2 Computation and Complexity in Economic Behavior and Organization

standard economic models, without requiring an analysis of approximations in
each application. In cases in which the analysis in the economic model is itself
numerical, then, as is the case with numerical analysis generally, computation
is necessarily finite and typically is carried out by persons who use a finite-state
machine. This raises a question about the relationship between the analysis of
complexity in our model when real variables are involved and the complexity of
the corresponding computation performed by a finite-state automaton that uses
a finite alphabet. Instead of analyzing this question case by case, we show (in
Chapter 6, Theorem 6.2.1) that the measure of complexity of a function obtained
from the continuum model (real variables and smooth functions) is a limit of a
sequence of measures of complexity obtained from finite networks, equivalent
to sequential machines, computing approximations to the smooth function in
question. The limit theorem presented in Chapter 6 shows that when regularity
assumptions are satisfied, our model of computation, and the measure of com-
plexity obtained in it, is an idealization of finite computing in the same sense in
which measurement with real numbers is an idealization of measurement with
rational numbers.

Real computing opens connections to classical mathematics. When comput-
ing is done over a finite alphabet, the technical machinery of analysis available
is combinatorial mathematics, which is difficult and, in the setting of standard
economic models, awkward. In contrast, when the alphabet is the real numbers,
or real vectors, the apparatus of classical analysis is available. In this book the
class of elementary operations is often taken to be the class of functions of at
most r variables, each a d-dimensional real vector, whose value is also a vector
in a d-dimensional Euclidean space. In terms of machines, the parameter d can
be thought of as the size of a register, and the parameter r as the number of regis-
ters. When a human being is doing the computing, the parameter d may refer to
the number of modalities of perception via the senses. Smoothness conditions
are sometimes imposed. A person typically receives visual, auditory, and other
sensory inputs simultaneously. In our model, the number of these is d. Further,
a person can perceive more than one input at a time, but not very many. In our
model the number of these is r. According to a classic paper (Miller, 1956) for
a human being the number r is approximately seven. A modular network whose
elementary functions satisfy the restrictions imposed by r and d is called an
(r, d) network. Much of the analysis in this book concentrates on analysis of
(r, d) networks.

How can an (r,d) network represent computations performed by a sys-
tem consisting of human beings and machines? When the class of elementary
functions consists of functions between Euclidean spaces (or between smooth
manifolds), it is not obvious that the (r, d}-network model can represent com-
putations performed by human beings, or by a combination of people and
machines. However, we can extend the model so that more abstract compu-
tations can be reduced to computations with real quantities. For this purpose
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Figure 1.1.1.

we introduce the idea of an encoded version of a function, and its computa-
tion. The formal definition appears in the first section of Chapter 4. Here we
make do with an informal description sufficient to understand the example that
follows.

Human beings are good at detecting patterns in low dimensions. For instance,
people have little trouble recognizing the pattern shown in Figure 1.1.1 as a
triangle.

We continue to recognize a triangle even if the corners, and perhaps other
pieces of the perimeter, are missing, or if the sides are slightly curved. Recog-
nizing a pattern can be thought of as computing a function that expresses the
relation between a subset of the plane, and the act of saying that it is a particular
pattern, in our example a triangle. Thus, recognizing a pattern is represented
as evaluating a function, p, whose value at the subset shown in Figure 1.1.1
is the word triangle. The domain of p is the set of subsets of the plane, not a
Euclidean space, and the range of p is the set of English words, or some suitable
subset of it, also not a Euclidean space. In the case of pattern recognition by
a human being, it is natural to consider p to be an elementary function, When
it is possible to encode the more abstract domain and range of the function in
terms of elements of Euclidean spaces, then, as Figure 1.1.2 shows, evaluating
© becomes equivalent to evaluating a function, », whose domain and range
are Euclidean spaces. Although 4 may be complex if evaluated by a machine,
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when p is elementary for a human agent, and the (fixed) encoding and decoding
functions are elementary, the function # becomes an elementary function in a
modular network model that applies to the system consisting of human agent
and machine. Figure 1.1.2 shows the scheme.

More broadly, the standard models of computer science are not convenient
for expressing the characteristics of human beings, in particular, economic
agents, as information processors, A machine can easily do some things that
people find difficult. Other things are easy and natural for people and difficult
for machines. Machines have no special difficulty in handling high-dimensional
data, whereas human beings do, Human beings are good at recognizing patterns
in low-dimensional data, whereas that task can be quite difficult for a machine.
Reading handwriting is relatively easy for literate human beings, and quite
complex for machines. The widespread and heavy use of computers to generate
two-dimensional visual representations of high-dimensional or complex data
so that a human being can study them graphically, rather than look at a printout
of the underlying function in the form of numerical data, testifies to the special
ability of humans to see patterns in low dimensions; it also testifies to the
limitations of humans to comprehend the same information presented in another
form. The standard models of computing represent these tasks independently
of who is to perform them, and the complexity of a task is the same whether
the computation is done by a human or a machine. A model in which reading
handwriting can be a simple task if done by a human being and a complex one
if done by a digital computer would come closer to capturing computation done
by persons equipped with machines.

Computers are sometimes used directly by human beings, who determine
and control their inputs, and receive and use their outputs. (Some computational
devices are internal to other machinery, such as the computers used to control
automobile engines and the like. In these cases the interaction with humans is
more remote.) In some cases when a human being is an active participant in the
course of a computation, with the result that the whole computation depends
on both the actions of the machine and of the person, it is nevertheless possible
to focus entirely on the analysis of the computation performed by the machine.
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But when, as in some economic models, the object of the analysis includes the
person, it is not appropriate to separate the person from the machine. When
these situations are important, there is need for a model of computation that
facilitates analysis of computational problems to be solved by a combination of
human and machine resources. The modular network model allows operations
that can be carried out by a person to be included in the set of elementary
functions. When an encoded version of such an elementary function exists, it
can be included in the set of elementary functions of an (r, d) network. Then
the analysis of the entire computational task of human and machine can be
modeled and analyzed seamlessly. (Analysis of some examples of computations
performed by a combination of humans and machines are presented in the
first section of Chapter 4. Also see Mount and Reiter, 1998.) Of course, the
entire computation might also be represented in one of the classical models of
computing, a Turing machine, or a finite-state automaton. Some work along this
line is in the literature. The finite-state automaton model and the Turing machine
model have been used in game theory (Neyman, 1985), where computational
issues also arise. In game theory, as in economic theory generally, it is assumed
that players are fuily rational and have unlimited computational abilities and
resources. These assumptions provide a basis for deep analysis of situations
in which the interests of agents may run together, and also conflict to some
extent. As in economic theory, there are attempts to weaken the assumptions
of full rationality and unlimited computational capabilities. The finite-state
automaton model has been used to analyze the complexity of strategies, and
the Turing machine model has been used to study the complexity of games.
The questions addressed are, for a given game: “How difficult is it for a player
to carry out a given strategy in that game?” and: “How difficult is it to solve
the game?”! Regarding the first question, Aumann (1981) suggested using
finite-state automata to measure the complexity of strategies. The measure is
the number of states of the smallest automaton that can execute the strategy.
(see Gilboa and Zemel, 1989). This is called strategic complexity. Infinitely
repeated games have been studied in this way (Rubenstein, 1979, 1986;
Abreu and Rubenstein, 1988; and Cho, 1995). There is substantial literature
in which finite-state automata or Turing machines are used to restrict strategic
complexity (Kalai and Stanford, 1988; Kalai, 1996). With respect to the second
question, the standard model of computational complexity in computer science,
namely the classification of computations based on the asymptotic theory of
complexity classes, has been used to analyze the complexity of solving games.
(Also see Ben-Porath, 1989; Kalai et al., 1993; Papadimitriou, 1992.) Ben-
Porath (1986) showed that there is an advantage to a player in a repeated two-
person zero-sum game with patient players from having a larger automaton. The

! Kalai (1996) surveys the literature relevant to these questions and provides a bibliography listing
the basic papers.
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advantage can be considerable, but the automaton must have an exponentially
larger number of states. We address these questions in Chapter 5 in the context
of the modular network model of computing.

The idea that human cognition is modeled well by Turing machines, or
finite-state versions of them, is widely asserted, but it remains controversial.?

There is another issue that deserves a brief comment here. An economic
agent experiences his environment directly. How that agent represents his en-
vironment in his own mind is usually not observable by others. The economic
analyst considering the agent’s behavior in his environment “constructs” her
own model of the situation in which she can deduce the optimal action of the
agent. We apply the (7, d)-network model to the analyst’s model in order to
analyze the computational complexity of the decisions of the agent. Because
the analyst’s choice of how to model the agent’s situation may have arbitrary
elements in it, the measure of complexity might reflect those arbitrary elements,
and consequently might be misteading. It is therefore important that the model
of computation and the complexity measure it defines do not depend on a par-
ticular parameterization of the problem. We want the measure of complexity
to be invariant with respect to transformations of the problem that preserve
its essential elements. Specifically, we want the measure of complexity to be
the same under coordinate changes in the spaces of the variables that define
the computation. The methods of analysis in Chapter 3 are coordinate free;
in Chapter 4, where the model is applied to analyzing the trade-off between
communication and computation in finding the equilibrium of a decentralized
message process, we show explicitly that the result is invariant under appro-
priate coordinate transformations of the underlying spaces.? There is a second
reason why invariance of the measure of complexity under coordinate trans-
formations is important. Changing coordinate systems can implicitly perform
computations without our taking explicit notice of them. For instance, to solve
a system of linear equations without doing any work, just assume that the co-
ordinate system is one that makes the matrix of the system diagonal. There
are also other ways of “smuggling” computation, but these are ruled out in our
analyses by regularity conditions.

2 Put briefly, the assertion is that the human brain (mind) is a Turing machine. Among others, Roger
Penrose does not subscribe to this assertion. His book (Penrose, 1994) is an excellent guide to
the issues and to the literature. It is not necessary for our purpose here to take a position on this
question. Even if it were the case that the brain is a Turing machine, it would not necessarily be
useful in applications to economic agents or economic organizations to model them as executing
algorithms in which the elementary steps are evaluations of Boolean functions over a finite
alphabet.

This is done in steps, beginning with linear coordinate transformations, and ending with general
nonlinear coordinate transformations. We show the invariance under linear coordinate transfor-
mations explicitly. The proof for nonlinear transformations is tedious and does not lead to any
new insight. We therefore refer the reader to Mount and Reiter (1990), where it is presented in
full.

w
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1.2. COMPLEXITY, MATHEMATICS, AND HUMAN CAPACITIES

There is adirect connection between the (r, d)-network model and certain class-
ical problems in mathematics. For instance, when we restrict attention to ana-
lytic functions, computation of a function F by an F network, where F is taken
to be the class of analytic functions of two variables, is related to Hilbert’s 13th
problem. That problem asks whether an analytic function of several variables
can be expressed as a superposition of analytic functions of two variables.
This is the same as asking whether an analytic function of several variables
can be computed by a (2, 1) network whose modules are analytic functions.
There is literature stemming from Hilbert’s 13th problem that includes contri-
butions by Kolmogorov and others, such as Kolmogorov (1961a, 1961b) and
Arnol’d (1963); also see Lorentz (1966). Kolmogorov first showed that each
continuous function of 1 real variables could be written as a superposition of
functions of three variables. Arnol’d showed that only functions of two variables
are required. Kolmogorov refined this result and showed that each continuous
function of n variables could be written as a superposition of continuous func-
tions of one variable and the binary function of addition. In general, the functions
required for superposition, besides addition, are not differentiable. The situa-
tion is more complicated when the functions in the superposition are required
to be smooth. It is known that there are s times differentiable functions of » vari-
ables that cannot be written as a finite superposition of s times differentiable
functions of fewer variables (see Lorentz, 1966 or Vitushkin, 1961). In this
book we work mostly with elementary functions that are twice continuously
differentiable, d-vector—valued functions of r variables, each a d-dimensional
real vector. Sometimes real analytic functions are used as elementary functions,
as in the paper by Mount and Reiter (1998). That paper presents some of the
ideas of our model in a less technical setting, and it also presents some ap-
plications of the model to human computing, specifically to Chernoff faces in
pattern-recognition problems (Chernoff, 1973).

In our model, computability and complexity are relative concepts. The com-
plexity of a given computation can be different depending on the class F of
elementary functions (and, if relevant, the class of graphs permitted). Consider
a polynomial of degree ten in one variable, and consider the function that as-
sociates the array of its roots with the vector of its coefficients. A person who
knows the coefficients and must compute the roots can be in one of at least three
situations. She may not have a computer available, or she may have a computer
but not have a program for the task, or she may have a computer equipped
with a program for computing the roots of polynomials from the coefficients,
for example, the program Gauss, or Mathematica. A person without access to
a computer, or one using a personal computer that lacks a program for that
purpose, would find this a time-consuming task — a complex task. However,
that same person using a computer equipped with Gauss or Mathematica could
accomplish the task with a few keystrokes. In that case it would be sensible in
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many situations to regard the function that associates the roots to the coefficients
as an elementary operation, and not pursue the analysis to more detailed levels
of the program doing the work. To require that every computation be reduced
to a fixed given level of elementary operations, such as Boolean functions over
a finite alphabet, results in a model that is awkward to apply to computations
done in the context of economic problems by economic agents or by economic
theorists, whether they do or do not have access to computing machines.

The idea that complexity is a relative concept is in keeping with practice
in mathematics. There the notion of solution to a problem is also relative. For
example, what does it mean to solve a differential equation? Among other pos-
sibilities, it can mean to find an integral, perhaps expressed in some abstract
form, or it can mean to find the solution trajectories numerically. The complex-
ities of these two tasks can be quite different. In mathematics a problem can be
considered as solved in cases that are quite different. For instance, a problem
might be considered solved if it is shown to be equivalent to another problem
for which a solution is known, or to one that is known to have a solution, or to
one for which there is an algorithm.

1.2.1. Complexity and Computability

In the F-network model, the complexity of a function F relative to the class
F (F complexity) is the minimum over all F networks A of the number of
sequential steps in the longest path in the network A. We also refer to this as
the time it takes A to compute F. When we take account of the resources used to
evaluate elementary functions, the time can vary depending on the assignment
of elementary operations to agents (see Chapter 7). If the F complexity of
F is infinite, then F is not F computable; that is, it is not computable by
networks with modules in the class . We will sometimes refer to the complexity
of F, omitting reference to the class F when it is clear which class is being
used.

Note that the complexity of a function depends only on the class of elemen-
tary functions, and not on a particular algorithm that might be used to compute
it. In some cases, in which the functions being computed are smooth and the
set of elementary functions is appropriately specified, we are able to give lower
bounds, sometimes exact, on the complexity of a function F in terms of prop-
erties of F alone, that is, independently of the algorithms used. This means that
the complexities of, say, different polynomial or rational functions (functions
in the standard complexity class P) can be compared without having to count
the steps of the algorithms being used to compute them. In the case of smooth
functions between Euclidean spaces (or, more generally, smooth manifolds)
the lower bound on computational complexity is determined by the number of
variables that the function actually depends on (as distinct from the number of
its nominal arguments). The calculation of the lower bound does not require



