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Preface

PRIOR TO THE REVOLUTION in school mathematics, the typical college
algebra textbook included all of the topics of high school algebra in addi-
tion to many topics not included in the standard high school curriculum.
At that time the standard college algebra course was part of the cur-
riculum of most entering college freshmen. This course provided a re-
view of high school algebra and an introduction to additional topics which
are desirable and useful in the study of analytic geometry and calculus.

Today, many students enter college with two years or more of high
school algebra. These students usually omit the college algebra course
and begin their college studies with analytic geometry and calculus. Those
topics previously included in the college algebra text, which were not
included in the high school algebra courses, are now included in the ana-
lytic geometry and calculus course. It would be inconsistent with the
philosophy of the more up-to-date programs to include, in a college al-
gebra course, all of the topics of high school algebra and, in addition,
those additional topics which would have to be repeated in the analytic
geometry and calculus course. Furthermore, in a one-semester college
algebra course. it is impossible to cover adequately the two-year high
school algebra course, at a higher level of abstraction than the typical
high school course, if the additional topics are included. For this reason
we have written this text as a high-level review of the standard two-year
high school algebra course. We believe that the main purpose of a good
college algebra course is to provide the student with an adequate founda-
tion in those topics which are absolutely essential to a systematic study
of analytic geometry and calculus; therefore, we have omitted some of
the traditional topics of the traditional college algebra text.
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vi Preface

College Algebra may be taught, in one semester, according to any one
of the following outlines:

1. Chapters 1 through 7, or
Chapters 1 through 8, or
Chapters 1 through 9, or
Chapters 1 through 7, Chapters 10 and 11, or
Chapters 1 through 8, Chapters 10 and 11, or
. Chapters 1 through 11.

The material has been taught in most of the above combinations at
the University of Southwestern Louisiana and at Clemson University.

The end of the proof of each theorem is indicated by the symbol «“<.”
Although it is preferable to include the proofs, the instructor who wishes
to omit them may do so without disrupting the continuity. As each
theorem is motivated by examples preceding and following it, the text
flows well without the proofs.

We are indebted to many persons, especially to our colleagues who
urged us to write College Algebra. In particular, we express our gratitude
to Dr. Seymour Schuster of the University of Minnesota for his valuable
suggestions, comments, and criticisms. He followed and read the manu-
script as it was developed and reread it after it was completed. We are
grateful also to Dr. Z. L. Loflin, Chairman of the mathematics depart-
ment at the University of Southwestern Louisiana, and to Miss Jessie
May Hoag, also of the mathematics department, for their encouragement;
to Mrs. Louise Fulmer of Clemson University for her valuable com-
ments; and to Mr. M. J. Cortez of Allemand School, to Miss Diana Kay
Regan, and Miss Mary Catherine Dugas for typing most of the manu-
script and preparing the answers to the exercises.

Finally, we thank our wives and children for their patience, understand-
ing, and encouragement during the preparation of the manuscript.

LA W

MERLIN M. OHMER
CLAYTON V. AUCOIN
Lafayette, Louisiana
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CHAPTER 1

Sets

1.1 Introduction

The purpose of this section is to present a brief introduction to some
of the fundamental terminology in the subject of mathematics. In any
discussion, we must agree on the definitions of the terms used, or else
we must leave certain terms undefined. You have probably witnessed
heated arguments between friends. Usually such an argument ends where
it begins; each person leaves still convinced of his own point of view.
Actually, the debaters may have been in almost complete argreement.
This apparent paradox has a simple explanation—the two persons did
not agree beforehand on the definitions of the words used. Each attached
his own special meanings to the words. For example, a United States
official may have a definition of the word democracy far different from
that of a USSR official. Your experience tells you that the two officials
probably cannot agree on an issue involving democracy. To avoid
ambiguity and contradictions in mathematics, we must agree, in advance,
on the definitions of all technical words used or else we must state which
words are undefined. The reason for not defining certain mathematical
words is that it is impossible to define all mathematical words without
permitting our definitions to form circular chains. As simple as this fact
may seem, many great mathematicians and philosophers of the past did
not realize this. If you look up the definition of an unfamiliar word in a
standard dictionary, you discover that this unfamiliar word is defined in
terms of other words. If you look up these other words, you find that they
are defined in terms of other words. Eventually one of the new words is

1



2 Sets [Ch. 1

the original word whose definition you were seeking. For example, we
might find the following:

set—group

group —assemblage
assemblage — collection
collection — set

Once we have selected the relatively small number of undefined words
in the mathematical system under investigation, we strive to have the
definitions obey the following properties:

1. Any definition of a new word must be expressed in terms of the un-
defined words and/or the previously defined words and common non-
technical English words.

2. Any definition must be consistent with itself and with other definitions.

Any definition must be meaningful.

4. Any definition must be expressed in such a manner that it includes
all desired cases and excludes all undesired cases.

w

Just as we begin with certain undefined words, we also begin with
certain statements which we assume to be true. These assumed state-
ments are called postulates. Other names for the assumed statements are
axioms and assumptions. Among other things, the postulates describe
the undefined words. For example, the words point, line, and plane are
left undefined in Euclidean geometry. However, they are described in the
postulates. Two of these postulates are: (1) two different points deter-
mine exactly one line; (2) three noncollinear points determine a unique
plane.

Just as we define the new words in terms of the undefined words and/or
the previously defined words, we prove new statements, called theorems,
from the postulates, definitions, and previously proved theorems. The
reasoning process which we employ in proving theorems is controlled
by the laws of logic or rules of inference. The laws of logic control the
combination of given sentences (called the hypotheses) into one or more
new sentences (called the conclusion).

Since our use of the word sentence is different from the English usage,
we begin with its definition.

DEFINITION 1. A sentence is any declarative statement which is either
true or false, but not both true and false.

Thus we see that a sentence must be meaningful and unambiguous. The
following are examples of sentences.
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Example 1. My mother has blue eyes.
Example 2.  All dogs are quadrupeds.
Example 3.  Some dogs are quadrupeds.
Example 4. No dogs are quadrupeds.
Example 5. Benjamin Franklin wore glasses.
Example 6. 14 + 2 = 16.

Example 7. 6 +3 =3 + 6.

Example 8. 5 is equal to 6.

Example 9.  All ninth grade algebra students study mathematics and
some ninth grade students study English.

Example 10. 1f John comes home, then his wife will cook dinner.

Although we could refuse to admit that Examples 1, 5, and 10 are
sentences on the grounds that one cannot determine, for example,
whether the sentence in Example 10 is true until he knows who John is,
we prefer to agree that any name appearing in a sentence specifies a
particular person, object, and so on. In everyday conversation when one
of your acquaintances tells you that Jack Jones is ill, you know that he
is referring to a particular Jack Jones, in spite of the fact that, in reality,
there are numerous persons named Jack Jones. Actually, although one
would ordinarily say that the sentence of Example 6 is true, it is similar
to Examples 1, 5, and 10. When we write “14 + 2 = 16,”” we mean
“fourteen plus two is equal to sixteen.” The symbols “14,” 2. and
*“16” are similar to the names John, Ben, et cetera. They symbolize or
represent the numbers just as the name John symbolizes or represents
the person. You probably have learned that the symbol *“14” may rep-
resent some number other than fourteen.* However, when we write
“14 4+ 2 = 16,” you know that we are referring to particular numbers.
Thus we agree to visualize a sentence as stated by a specific person at a
specific time and place. In this way any possible ambiguities are clarified
by the context.

The similar statement “x + 2 = 16" is not a sentence because the
symbol x does not specify a particular number. Until we know that the
symbol x specifies a particular number, we cannot determine whether
“x + 2 = 16" is true or not. For example, if x = 14, we can say that

* For example, in base S the symbol 14 represents the number nine.



