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1.1 Introduction

Single cell origin of hematopoiesis is considered
to be a hallmark of all myeloid malignancies. In
hematological malignancies, the mutations initiat-
ing stem cell clonality can have various forms such
as translocated chromosomes, chromosomes with
deleted or amplified regions, or point mutations in
single genes. Once a stem cell clone has been
established, it expands and its progeny competes
with healthy cells for “habitat” in the bone marrow
microenvironment. As the clone expands, more
mutagenesis occurs in the next generation of cells.
Although vast majority of these newly acquired
genomic mutations do not provide any benefit to
the clone, some lesions may prove to be useful and
provide a selective advantage. Therefore, selection
is the main driving force that shapes the cancer
genome in the given environment. Different tis-
sues have different selective forces that evolve the
cancer genome. In hematological malignancies,
the stem cell clone of each patient takes on a
unique evolutionary path even though the accom-
panying genetic defects are often recurrently det-
ected when many myeloid cancer genomes are
compared. The mutations acquired in the evolu-
tion of the myeloid cancer genome and their com-
bined effects may have different influence on the
differentiation dynamics of the hematopoietic pro-
genitors. Some mutations reduce and others may
increase the output of the terminally differentiated
cells. Each clonal evolution has a certain pheno-
typic outcome often detectable by differential
blood count and histopathologic evaluation of the
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bone marrow. The clinical classification of these
different phenotypic outcomes provided the foun-
dations for diagnosis in the past. Inclusion of the
genetic defects that associate with certain clinical
entity into the diagnosis has brought significant
improvements in the diagnostic process. The
developments in the field of myeloproliferative
neoplasms (MPN) in the past decade are an excel-
lent example of this process.

MPN represent a phenotypically diverse group
of hematological malignancies. MPN are charac-
terized by a single or multilineage overproduc-
tion of terminally differentiated blood elements
and pronounced predisposition to thrombosis,
bleeding, and leukemic transformation. There are
three major MPN phenotypes characterized by
distinct clinical features: polycythemia vera (PV),
essential thrombocythemia (ET), and primary
myelofibrosis (PMF). The vast majority of pat-
ients have a stable disease often lasting many
years. However, the chronic phase phenotype
may progress to a stage characterized by second-
ary (post-PV or post-ET) myelofibrosis, variable
degrees of pancytopenia, and accumulation of
blasts in the bone marrow and peripheral blood.
Further evolution of this stage results in acute
leukemia. Although there were certain exceptions
described, the majority of myeloid cells in MPN
have single cell origin and are derived from a
stem cell clone dominating the productive myelo-
poiesis. MPN is a phenotypic outcomes of clonal
stem cell evolution driven by a certain set of
somatic mutations. Mutations of the JAK2 kinase
gene are found in approximately two thirds of
patients with MPN (Baxter et al. 2005; James
et al. 2005; Kralovics et al. 2005; Levine et al.
2005). Almost all patients with PV carry JAK2
kinase mutations, whereas only about half of
PMF and ET cases test positive for JAK2 muta-
tions. Only a minority of PMF and ET cases carry
mutations of the thrombopoietin receptor gene
MPL (Beer et al. 2008; Pardanani et al. 2006;
Pikman et al. 2006). JAK2 and MPL oncogenic
mutations are often preceded or followed by
cytogenetic lesions such as deletions or chromo-
somal gains (Kralovics 2008). Cytogenetic
lesions in MPN contribute to clonal outgrowth
and have a potential to contribute to the overall

clinical phenotype. Despite recent efforts to
define the mutation profile of MPN patients,
about one third of MPN cases do not carry a
detectable cytogenetic lesion or mutations in
JAK2 or MPL. Many studies are ongoing that
focus on this “gap” in MPN biology. New genetic
lesions with diagnostic value will likely emerge
in the near future.

1.2  Diversity of Gene Defects

in the Pathogenesis of MPN

Despite a number of newly discovered somatic
defects in the MPN pathogenesis, JAK2 and MPL
mutations remain the most prominent and show
highest specificity for MPN. High-resolution map-
ping of deletions on chromosome 4 led to the iden-
tification of TET2 — an important tumor suppressor
gene in most myeloid malignancies including MPN
(Delhommeau et al. 2009). In addition to deletions
of TET2, loss-of-function point mutations occur
even more frequently than deletions. TET2 muta-
tions are detectable in about 13% of MPN patients
depending on the studied cohort and MPN entity
with highest frequencies observed in PV and PMF
(up to 20%) (Delhommeau et al. 2009; Tefferi et al.
2009a, b). TET2 deletions occur in about 3% of
MPN patients (Klampfl et al. 2011). Interestingly,
most patients carry only heterozygous mutations or
hemizygous deletions. Thus, only slight decrease
of active gene dosage of TET?2 is sufficient to grant
clonal advantage to hematopoietic stem cells
(Delhommeau et al. 2009). As TET2 encodes
an enzyme that converts 5-methylcytosine to
5-hydroxymethylcytosine, loss of TET2 function
might alter epigenetic gene regulation. Regulation
of gene expression seems to be frequently altered in
myeloid malignancies by mutations or deletions of
genes involved in transcription. Examples of these
lesions include losses/mutations of IKZF1, CUXI,
and EZH2, all located on chromosome 7 and found
in all myeloid malignancies including MPN (Ernst
et al. 2010; Jager et al. 2010; Klampfl et al. 2011).
It might explain why monosomy 7 is one of the
most severe cytogenetic lesions in myeloid malig-
nancies as at least three tumor suppressor genes are
affected at the same time. Another example is
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mutations in the ASXL1 gene, a gene encoding a
polycomb transcription factor involved in negative
regulation of HOX genes (Abdel-Wahab et al.
2010). Cytogenetic studies using high-resolution
microarrays implicated additional transcription
factors such as ETV6, FOXP1, RUNXI1, and CUX2
that are frequently deleted in MPN (Klampf et al.
2011). It remains unclear what function of
hematopoietic stem cells is impaired by decreased
functional dosage of transcription factor genes. As
most of these proteins are involved in transcrip-
tional repression, their loss might be associated
with increased frequency of cell cycle entry and/or
alterations of differentiation dynamics within the
progenitor compartment.

Another large group of defects in MPN is
directly involved in cytokine signaling. In addi-
tion to JAK2 and MPL mutations, frequent muta-
tions are found in the E3 ubiquitin ligase CBL
(Dunbar et al. 2008; Grand et al. 2009; Sanada
et al. 2009). It regulates the stability of proteins
involved in cytokine signaling by ubiquitination
that leads to proteasome-dependent degradation
(Schmidt and Dikic 2005). CBL ubiquitinates
cytokine receptors (Epo-R, c-Kit), tyrosine
kinases (JAK2, Tyk2, Abl), as well as signaling
adaptors (Grb2) (Schmidt and Dikic 2005). CBL
mutations act as dominant negative and are found
in the RING finger motif of the protein encoded
by exons 8 and 9 (Grand et al. 2009; Ogawa et al.
2010a, b; Sanada et al. 2009). Activation of
cytokine signaling induces STAT-dependent tran-
scription. Among the genes induced by cytokines
are the SOCS proteins that negatively regulate
the signaling cascade by binding to the receptors
or JAK2 (Nicola et al. 1999). SOCS genes can be
impaired in MPN either due to hypermethylation
(Jost et al. 2007; Teofili et al. 2008) or due to
deletions (Klampfl et al. 2011). In addition to the
JAK-STAT signaling, two members of the MAP-
kinase pathway NRAS and NF1 have been shown
to be targeted by mutagenesis in MPN (Beer et al.
2009; Stegelmann et al. 2010). Activating NRAS
mutations have been found in MPN patients that
transformed to leukemia, whereas NF1 deletions
and mutations are often detected in chronic phase
ET and PMF. Mutations in the signaling adaptor
LNK (SH2B3) have been recently identified in

MPN although they are rare and predominantly
present in patients with advanced disease (Gery
etal. 2009; Oh et al. 2010; Pardanani et al. 2010a).
LNK negatively regulates JAK2 and c-KIT
(Simon et al. 2008; Tong and Lodish 2004; Tong
et al. 2005), and mice deficient for LNK develop
myeloproliferative phenotype (Velazquez et al.
2002). In a different SH2B family member
(SH2B2), a single somatic mutation found in a
case of post-MPN AML (Klampfl et al. 2011).

The V617F and exon 12 mutations of JAK?2 as
well as MPL mutations have clearly been shown
to have high selectivity for MPN and also induce
amyeloproliferative phenotype in mice. Mutations
in the rest of the above mentioned genes do not
show specificity for MPN and are distributed at
variable frequencies across all myeloid malignan-
cies. It remains to be seen if murine models might
clarify their potential to induce a myeloprolifera-
tive phenotype. Furthermore, more than a third of
MPN patients are negative for JAK2 or MPL
mutations, and none of the other genes explain
MPN phenotype in these patients. Functional
studies of individual mutations may not be suffi-
cient as patients often carry several mutations and
cytogenetic lesions. As the acquisition order of
mutations turned out to be insignificant, the com-
bination of different mutations might be impor-
tant. It is possible that certain combinations of
somatic lesions of weaker phenotypic effect will
result in MPN in the absence of dominant lesions
such as JAK2-V617F. If this is the case, JAK2-
and MPL-negative patients will represent a very
heterogeneous population with many types of
somatic lesions and their combinations. Whole-
genome sequencing will provide some answers,
but it is already clear that MPN is a remarkably
complex disease both genetically as well as
phenotypically.

Mutations Associated
with Disease Progression

1.3

At least three disease stages can be defined in
MPN. The chronic phase is characterized by a sta-
ble disease with minimal evidence for progression.
In ET and PV, disease progression is evident when
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patients develop secondary myelofibrosis. Another
stage that s clinically recognizable is often referred
to as “accelerated” phase characterized by variable
degree of cytopenia (most often anemia) and grad-
ual increase of blasts in bone marrow and periph-
eral blood. The last stage is the leukemic stage
where the frequency of blasts increases over 20%
in the bone marrow.

To date, MPN is associated with somatic
lesions in over 20 different genes; however, their
role in the pathogenesis remains unclear. It is
important to classify the MPN-associated molec-
ular lesions based on their impact on the severity
of phenotype they induce. These studies are often
difficult to achieve as large patient cohorts are
needed, and many genes due to their shear size
are laborious to screen for mutations. For exam-
ple, TET2, ASXLI1, and NF1 combined have a
over 19,000 base pairs of coding sequence in over
80 exons, and as their mutation frequencies are
relatively low, large patient numbers are needed
to test association with clinical features. In cer-
tain cases, mutation frequencies are reported only
in patients that show disease progression, whereas
no data are available on the frequency in the
chronic phase of the disease. Thus, rigorous sta-
tistical evidence is often missing when a certain
lesion is implicated in disease progression.

The first lesion studied in terms of implica-
tions for disease progression was the JAK2-
V617F mutation. Patients exhibit difference in
V617F mutational burden due to variable popula-
tions’ sizes of myeloid cells with wild-type,
heterozygous, and homozygous genotypes for
JAK2-V617F. A number of studies addressed the
clinical impact of high V617F burden, and a clear
association was found with secondary myelofi-
brosis (Vannucchi et al. 2007). This means that
PV and ET patients with high JAK2-V617F bur-
den are more likely to develop secondary myelo-
fibrosis. Similarly, progression to secondary
myelofibrosis in PV and ET was confirmed for
uniparental disomy 9p associated with high
JAK2-V617F burden (Klampfl et al. 2011).

Mutations of the p53 tumor suppressor
(encoded by the TP53 gene) have previously been
reported in few post-MPN AML cases (Beer et al.
2009). The TP53 mutation frequency in the

chronic phase of MPN was unknown, and there-
fore the significance of TP53 mutations the trans-
formation process was unclear. In recent studies,
the TP53 mutation frequency was determined both
in chronic phase as well as in post-MPN AML
cases (Harutyunyan et al. 2011b; Klampfl et al.
2011). TP53 mutations were found common in the
leukemic phase (20%), whereas only few patients
in the chronic phase carried a mutation (1.6%).
Interestingly, TP53 mutation positive chronic
phase patients carried only monoallelic mutations
while post-MPN AML patients carried mostly
biallelic TP53 mutations. Another p53 pathway
related lesion associated with post-MPN AML is
gain of chromosome 1q as the MDM4 gene was
found within the 1q amplicon (Harutyunyan et al.
2011b). Since MDM4 is a potent inhibitor of p53,
1q gains may increase the MDM4 gene dosage
and result in a similar effect as TP53 mutations.
Gains of 1q and TP53 mutations never found
together in the same patient — an observation made
also in solid tumors (Veerakumarasivam et al.
2008). If the frequencies of TP53 mutations and
MDM4 gains are combined, they might explain
about 40% of transformation event in MPN. As
TP53 mutation rate in de novo AML is low (Wattel
et al. 1994), the question arises to what degree
pharmacologic management of MPN and/or MPN
biology influence acquisition of p53 pathway
lesions. Long-term treatment of MPN patients
with DNA damage-inducing agents might target
the p53 pathway for mutagenesis to facilitate
clonal progression. However, such link has not
been established as yet (Bjorkholm et al. 2011).
The transformation of MPN to post-MPN
AML tuned out to share common defects with
de novo AML. However, mutations in genes pre-
viously implicated in de novo AML are found
mutated at somewhat lower frequencies in post-
MPN AML. These genes include IDHI1/2
(Andrulis et al. 2010; Green and Beer 2010;
Klampfl et al. 2011; Kosmider et al. 2010;
Pardanani et al. 2010b), RUNX1 (Ding et al.
2009; Klampfl et al. 2011; Taketani et al. 2002),
FLT3 (Klampfl et al. 2011; Lin et al. 2006),
NPM1 (Klampfl et al. 2011; Oki et al. 2006;
Schnittger et al. 2011), and DNMT3A (Abdel-
Wahab et al. 2011; Stegelmann et al. 2011).
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Mutations of TET2 have been linked to more
aggressive disease; however, their leukemic
potential remains questionable as TET2 mutation
frequencies in chronic phase and in post-MPN
AML do not differ dramatically (Tefferi 2010).
Moreover, TET2 is often acquired before JAK2-
V617F, and thus, TET2 mutations likely play a
role in initiation of clonal hematopoiesis. Muta-
tions of CBL and EZH?2 seem to have stronger
association with leukemic transformation; how-
ever, strong evidence is still missing.

The cytogenetic lesions have been extensively
investigated using single-nucleotide polymor-
phism (SNP) array technologies. These microar-
rays allow the measurement of copy number and
provide simultaneous assessment of SNP heter-
ozygosity across the whole genome (Klampfl
et al. 2011; Stegelmann et al. 2010; Thoennissen
et al. 2010). Marker densities used depended on
the microarray platform ranging from 50,000 to
1.8 million. In the most recent study using SNP
arrays with 1.8 million marker/genome resolu-
tion, over 400 MPN patients were evaluated in
various disease stages (Klampfl et al. 2011).
Cytogenetic complexity of MPN patients did not
differ among the three MPN entities, and JAK2
mutations status and disease duration did not
associate with increased number of cytogenetic
lesions. The cytogenetic complexity considerably
increased with disease progression. Among the
25 recurrent aberrations, only 8 showed associa-
tion with leukemic transformation including
gains of 1q (MDM4) and 3q, deletions of chro-
mosomes 7q (CUX1), 7p (IKZF1), 5q, and 6p, as
well as uniparental disomies on 19q and 22q.
Post-MPN AML patients carrying these chromo-
somal aberrations also had other mutations in
TP53, RUNX1, or IDH1/2; however, one third of
patients had not detectable somatic lesion and
had a normal karyotype (Klampfl et al. 2011).

As more data are available on the leukemic
association of individual lesions, we might have
come closer to assemble a set of molecular
markers with prognostic value. Those lesions
that are strongly inducing leukemic transforma-
tion are of less prognostic value as they are
almost never observed in the chronic phase of
MPN, and the time between acquisition of the

lesion and transformation is short. Mutations in
TP53, CBL, and perhaps EZH2 and LNK might
be of some value, but their usefulness needs to
be examined in prospective studies.

1.4  Hereditary Factors Influence

MPN Pathogenesis

Existence of familial clustering of MPNs is con-
sidered to be the strongest evidence that germline
mutations may cause an MPN like phenotype.
This concept was further strengthened when a
clear molecular distinction of true familial MPN
from other familial syndromes such as familial
erythrocytosis and hereditary thrombocythemia
has become possible using clonality markers, cel-
lular studies, and JAK2 mutation analysis.
Familial MPN remains clinically indistinguish-
able from sporadic MPN, and this applies also for
the presence of somatically occurring JAK2,
MPL, TET2 mutations. Only MPL mutations
were found germline in some pedigrees with an
ET-like phenotype. Germline TET2 mutations/
variants were reported, but they were not segre-
gating in familial MPN cases, and thus their role
remains elusive.

Another example of germline genetic factors
influencing MPN pathogenesis was the discovery
of the GGCC (also known as 46/1) haplotype of
the JAK2 gene (Jones et al. 2009; Kilpivaara et al.
2009; Olcaydu et al. 2009a, b). Somatic muta-
tions of JAK2 in MPN do not distribute equally
between the two most common JAK2 gene hap-
lotypes in Caucasian populations. The GGCC
haplotype acquires over 80% of all V617F muta-
tions as well as exon 12 mutations. The molecu-
lar reason why this deviation from random
mutagenesis exists remains unclear. The GGCC
haplotype predisposes carries for JAK2 mutation
positive MPN, and thus its major role is in the
disease initiation. The hypothesis that the GGCC
haplotype might account for familial clustering
of MPN has recently been disproved in a study
showing equal haplotype frequency in sporadic
and familial MPN cases (Olcaydu et al. 2011).
The reason why the GGCC haplotype has negli-
gible role in familial MPN is its weak ability (low
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penetrance) to initiate the disease phenotype. An
as yet unknown, germline mutation(s) in familial
MPN has an estimated three orders of magnitude
higher penetrance than the GGCC haplotype
(Olcaydu et al. 2011).

Another interesting way how germline muta-
tions or polymorphisms may influence disease
course in cancer has recently been described
(Harutyunyan et al. 2011a). Harutyunyan et al.
studied a polycythemia vera patient who was a
germline carrier of a rare Fanconi anemia non-
sense mutation (FANCM) on chromosome 14.
The patient acquired uniparental disomy on chro-
mosome 14 that switched the FANCM mutation
from heterozygosity to homozygosity and caused
the shift from polycythemia to anemia. Rare
recessive mutations each patient carries have no
phenotypic effect in heterozygous state (when the
wild-type gene copy is present). However, loss of
heterozygosity (LOH) often occurs in the cancer
tissue that may expose recessive mutations. This
way cancer cells may tap into a resource of ger-
mline recessive mutations from which some may
prove advantageous for cancer growth; others
may have unpredictable phenotypic effects.

1.5 Future Directions

With the advances of whole-genome analysis,
more somatic lesions are expected to be discov-
ered in MPN. Thus, genetic complexity of MPN
will increase. To sort out the role of these, molec-
ular lesions in the disease pathogenesis and their
clinical significance will require coordinated
multicenter studies that ensure large cohort size
and access to high-throughput genome analysis.
Genotypic stratification of patients may also be
the key to successful treatment as well as to
proper clinical management of patients.
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