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Preface t¢ the Second Edition

In this edition, a set of Supplementary Notes and Remarks has been
added at the end, grouped according to chapter. Some of these call
attention to subsequent developments, others add further explanation
or additional remarks. Most of the remarks are accompanied by a
priefly indicated proof, which is sometimes different from the one given
in the reference cited. The list of references has been expanded to
include many recent contributions, but it is still not intended to be
exhaustive.

Bryn Mawr, April 1980 John C. Oxtoby



Preface to the First Edition

This book has two main themes: the Baire category theorem as a method
for proving existence, and the “duality” between measure and category.
The category method is illustrated by a variety of typical applications,
and the analogy between measure and category is explored in all of its
ramifications. To this end, the elements of metric topology are reviewed
and the principal properties of Lebesgue measure are derived. It turns
out that Lebesgue integration is not essential for present purposes—the
Riemann integral is sufficient. Concepts of general measure theory and
topology are introduced, but not just for the sake of generality. Needless
to say, the term “category” refers always to Baire category; it has nothing
to do with the term as it is used in homological algebra. -

A knowledge of calculus is presupposed, and some familiarity with
the algebra of sets. The questions discussed are ones that lend themselves
naturally to set-theoretical formulation. The book is intended as an
introduction to this kind of analysis. It could be used to supplement a
standard course in real analysis, as the basis for a seminar, or for inde-
pendent study. It is primarily expository, but a few refinements of known
results are included, notably Theorem 15.6 and Proposition 20.4. The
references are not intended to be complete. Frequently a secondary
source is cited where additional references may be found.

The book is a revised and expanded version of notes originally
prepared for a course of lectures given at Haverford College during the
spring of 1957 under the auspices of the William Pyle Philips Fund.
These, in turn, were based on the Earle Raymond Hedrick Lectures
presented at the Summer Meeting of the Mathematical Association of
America at Seattle, Washington, in August, 1956.

Bryn Mawr, April 1971 John C. Oxtoby
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1. Measure and Category on the Line B

The notions of measure and category are based on that of countability.
Cantor’s theorem, which says that no interval of real numbers is countable,
provides a natural starting point for the study of both measure and
category. Let us recall that a set is called denumerable if its elements can
be put in one-to-one correspondence with the natural numbers 1,2, ...
A countable set is one that is either finite or denumerable. The set of
rational numbers is denumerable, because for each positive integer k
there are only a finite number (< 2k — 1) of rational numbers p/q in
reduced form (g >0, p and q relatively prime) for which |p| + g =k. By
numbering those for which k = 1, then those for which k=2, and so on,
we obtain a sequence in which each rational number appears once and
only once. Cantor’s theorem reads as follows.

Theorem 1.1 (Cantor). For any sequence {a,} of real numbers and for
any interval I there exists a point p in I such that p + a, for every n.

One proof runs as follows. Let I, be a closed subinterval of I such that
a; ¢1,. Let I, be a closed subinterval of I, such that a, ¢ I,. Proceeding
inductively, let I, be a closed subinterval of I,,_, such that a, ¢ I,. The
nested sequence of closed intervals I, has a non-empty intersection. If
pe ()1, then peland p + a, for every n.

This proof involves infinitely many unspecified choices. To avoid this
objection-the intervals must be chosen according to some definite rule.
One such rule is this: divide I, _, into three subintervals of equal length
and take for I, the first one of these that does not contain a,. If we take
I, to be the closed interval concentric with I and half as long, say, then
all the choices are specified, and we have a well defined function of
(I, a,,a,, ...) whose value is a point of I different from all the a,,.

The fact that no interval is countable is an immediate corollary of
Cantor’s theorem.

With only a few changes, the above proof becomes a proof of the
Baire category theorem for the line. Before we can formulate this theorem
we need some definitions. A set A is dense in the interval I if A has a non-
empty intersection with every subinterval of I; it is called dense if it is



dense in the line R. A set A is nowhere dense if it is dense in no interval,
that is, if every interval has a subinterval contained in the complement of
A. A nowhere dense set may be characterized as one that is “full of holes.”
The definition can be stated in two other useful ways: 4 is nowhere dense
if and only if its complement A’ contains a dense open set, and if and only
if 4 (or A, the closure of A) has no interior points. The class of nowhere
dense sets is closed under certain operations, namely

Theorem 1.2. Any subset of a nowhere dense set is nowhere dense.
The union of two (or any finite number) of nowhere dense sets is nowhere
dense. The closure of a nowhere dense set is nowhere dense.

Proof. The first statement is obvious. To prove the second, note that
if A, and A, are nowhere dense, then for each interval I there is an
interval I, CI — A, and an interval I,CI, — A,. Hence I, CI1 — (A, UA,).
This shows that A,qu is nowhere dense Fmally, any open interval
contained in A’ is also contained in A™". []

A denumerable union of nowhere dense sets i1s not in general nowhere
dense, it may even be dense. For instance, the set of rational numbers is
dense, but it is also a denumerable union of singletons (sets having just
one element), and singletons are nowhere dense in R.

A setis said to be of first category ifit can be represented as a countable
union of nowhere dense sets. A subset of R that cannot be so represented
is said to be of second category. These definitions were formulated in 1899
by R. Baire [18, p. 48], to whom the following theorem is due.

Theorem 1.3 (Baire). The complement of any set of first category
on the line is dense. No interval in R is of first category. The intersection
of any sequence of dense open sets is dense.

Proof. The three statements are essentially equivalent. To prove the
first, let A=(JA, be a representation of A as a countable union of
nowhere dense sets. For any interval I, let I, be a closed subinterval of
I —A,. Let I, be a closed subinterval of I, — 4,, and so on. Then (I,
is a non-empty subset of I — A, hence A" is dense. To specify all the
choices in advance, it suffices to arrange the (denumerable) class of closed
intervals with rational endpoints into a sequence. take I,=1, and for
n>0 take I, to be the first term of the sequence that is contained in
I, ,~A,.

The second statement is an immediate corollary of the first. The
third statement follows from the first by complementation. []

Evidently Baire's theorem implies Cantor's. Its proof is similar,
although a different rule for choosing 1, was needed.



Theorem 1.4. 4Any s.hset of a set of first category is of first category.
The union of any countable family of first category sets is of first
category.

It is obvious that the class of first category sets has these closure pro-
perties. However, the closure of a set of first category is not in general of
first category. In fact, the closure of a linear set A is of first category if
and only if 4 is nowhere dense.

A class of sets that contains countable unions and arbitrary subsets
of its members is called a ¢-ideal. The class of sets of first category and
the class of countable sets are two examples of g-ideals of subsets of the
line. Another example is the class of nullsets, which we shall now define.

The length of any interval I is denoted by |I|. A set ACR is called a
nullset (or a set of measure zero) if for each ¢ > 0 there exists a sequence of
intervals [, such that AC ()1, and 3 |I,| <e.

It is obvious that singletons are nullsets and that any subset of a
nullset is a nullset. Any countable union of nullsets is also a nullset. For
suppose A; is a nullset for i=1, 2, ... . Then for each i there is a sequence
of intervals I;; (j=1,2,...) such that 4,C|J;1,; and 3 ,|I;}| <&/2". The
set of all the’ mterva]s I;; covers A, and Zu”ul <¢, hence A is a nullset.
This shows that the class of nullsets is a g-ideal. Like the class of sets of
first category, it includes all countable sets.

Theorem 1.5 (Borel). If' a finite or infinite sequence of intervals I,
covers an interval I, then > |I,| 2 |1|.

Proof. Assume first that I = [a, b] is closed and that all of the intervals
1, are open. Let (a,, b,) be the first interval that contains a. If b, Sb
let(a,, b,) be the first interval of the sequence that contains b,. If b, _, £
let(a,, b,) be the first interval that contains b,.,. This procedure must
terminate with some by >b. Otherwise the increasing sequence {b,}
would converge to a limit x £b, and x would belong to I, for some k.
All but a finite number of the intervals (a,, b,) would have to precede I,
in the given sequence, namely, all those for which b,_, el,. This is
impossible, since no two of these intervals are equal. (Incidentally, this
reasoning reproduces Borel's own proof of the “Heine-Borel theorem™
[S, p. 228]) We have

b—a<by—a =3 b;=b-)+b —a 23V (b;-a),

and so the theorem is true in this case.

In the general case, for any a > 1 let J be a closed subinterval of / with
|J|=|I|/a, and let J, be an open interval containing I, with |J,| = «ll,|.
Then J is covered by the sequence {J,}. We have already shown that



3|2 ). Hence ad |fl=2 |2 J|=|l|/a. Letting a—1 we obtain
the desired conclusion. ]

This thecorem implics that no interval is a nullset; it thereflore provides
still another proof of Cantor’s thcorem.

Iivery countable sct is of first category and of measure zcro. Some
uncountable scts also belong to both classes. The simplest example is the
Cantor set C. which consists of all numbers in the interval 10, 17 that
admit a ternary development in which the digit | does not appeai. It
can be constructed by deleting the open middle third of the interval [0, 1],
then deleting the open middle thirds of cach of the intervals [0, 1/3] and
{2/3, 1. and so on. If F, denotes the union of the 2" closed intervals of
length 1/3" which remain at the n-th stage, then C = () F,. Cis closed, since
it s an intersection of closed sets. C s nowhere dense, since F, (and
therclore €) contains no interval of length greater than 1/3". The sum
of the lengths of the intervals that compose F, s (2/3)", which is less than
al s taken sulliciently large. Henee Cis a nullset. Finally, cach number
vin(O. 1 | has a unique non-terminating biary development x = v XX,
Iy, 2y, then vy vsyy...is the ternary development with vy # | of some
point v of C. This correspondence between x and y. extended by mapping
0 onto itself, defines a one-to-one map of [0, '] onto a (proper) subsct of C.
It follows that C is uncountable: it has cardinality ¢ (the power of the
continuum).

1 he sets of measure zero and the scts of first category constitute two
a-ideals, cach of which properly contains the class of countable sets.
I'heir propertics suggest that a sct belonging to cither class s “small”
in one sense or another. A nowhere dense set is small in the intuitive
geometric sensce of being perforated with holes, and a set of first category
can be “approximated™ by such a set. A sct of first category may or may
not have any holes, but it always has a dense sct of gaps. No interval
can be represented as the union of a sequence of such sets. On the other
hand, a nullset 1s small in the metric sense that it can be covered by a
sequence of intervals of arbitrarily small total length. If a point is chosen
atrandoman an interval in such a way that the probability of its belonging
to any subinterval J is proportional to |J|,.then the probability of its
belonging to any given nullset is zero. 1t is natural to ask whether thesce
netions of smallness are related. Does cither class include the other?
That naither class does. and that in some cases the two notions may he
drametnically opposed. is shown by the following

Theorem 1.6, The line can be decomposed into two complementary sets
Vand B oswchthar Vis of first category and B is of ineasure zero.

Proof. Leta,  a,. ... bean enumeration of the sct of rational numbers
(or ol any countable dense subscet of the line). Let 1, be the open interval



with center a; and length 1/2"*/. Let G;=J)X,I;; (=1,2,...) and
B=()\{,G,. Foranye>0wecanchoose;so that 1/2/ <¢ Then BC | J[;;
and 3|1, = 3,;1/2'*/=1/2/ <¢. Hence B is a nuliset. On the other hand,
G, is a dense open subset of R, since it is the union of a sequence of open
intervals and it includes 4ll rational points. Therefore its complement
G; is nowhere dense, and A = B' = ( J;Gj is of first category. []

Corollary 1.7. Every subset of the line can be represented as the union
of anullset and a set of first cateqory.

There is of course nothing paradoxical in the fact that a set that is
small in one sense may be large in some other sense.



2. Liouville Numbers

Cantor’s theorem, Baire’s theorem, and Borel’s theorem are existence
theorems. If one can show that the set of numbers in an interval that lack
a certain property is either countable, or a nullset, or a set of first category,
then it follows that there exist points of the interval that have the pro-
perty in question, in fact, most points of the interval (in the sense of
cardinal number, or measure, or category, respectively) have the pro-
perty. As a first illustration of this method let us consider the existence
of transcendental numbers.

A complex number z is called algebraic if it satisfies some equation
of the form

ag+a,z+az*+ - +a,z"=0

with integer coefficients, not all zero. The degree of an algebraic number z
is the smallest positive integer n such that z satisfies an equation of
degree n. For instance, any rational number is algebraic of degree 1, |/§
is algebraic of degree 2, and ]/5 e W is algebraic of degree 4. Any real
number that is not algebraic is called transcendental. Do there exist
transcendental numbers? In view of Cantor’s theorem, this question is
answered by the following

Theorem 2.1. The set of real algebraic numbers is denumerable.

Proof. Let us define the weight of a polynomial f(x)=3%a,x' to be
the number n+ 3 5 |a,|. There are only a finite number of polynomials
having a given weight. Arrange these in some order, say lexicographically
(first in order of n, then in order of a,, and so on). Every non-constant
polynomial has a weight at least equal to 2. Taking the polynomials of
weight 2 in order, then those of weight 3, and so on, we obtain a sequence
S1» f2, f3, ... in which every polynomial of degree ! or more appears
just once. Each polynomial has at most a finite number of real zeros.
Number the zeros of f, in order, then those of f,, and so on, passing
over any that have already been numbered. In this way we obtain a
definite enumeration of all real algebraic numbers. The sequence is
infinite because it includes all rational numbers. []



This gives perhaps the simplest proof of the existence of transcendental
numbers. It should be noted that it is not an indirect proof; when all the
choices are fixed in advance the construction used to prove Theorem 1.1
defines a specific transcendental number in [0, 1]. It may be laborious
to compute even a few terms of its decimal development, but in principle
the number can be computed to any desired accuracy.

An older and more informative proof of the existence of transcendental
numbers is due to Liouville. His proof is based on the following

Lemma 2.2. For any real algebraic number z of degree n>1 there
exists a positive integer M such that
1
Mqg"

- 2>
a

for all integers p and ¢, 4 > 0.

Proof. Let f(x) be a polynomial of degree n with integer coefficients
for which f(z)=0. Let M be a positive integer such that |f'(x)| S M
whenever |z — x| £ 1. Then, by the mean value theorem,

(1 fN=1f(z)— f(x)|EM|z—x| whenever |z—x|Z1.

Now consider any two integers p and g, with g > 0. We wish to show that
|z—p/ql > 1/Mq". This is evidently true in case |z — p/q| > [, so we may
assume that |z — p/q| < 1. Then, by (1),|f(p/q)| £ M|z — p/q|, and therefore

(2) lg"f (p/q)) = Mq"|z— p/q|.

The equation f(x)=0 has no rational root (otherwise z would satisfy
an equation of degree less then n). Moreover, ¢"f(p/q) is an integer.
Hence the left member of (2) is at least 1 and we infer that |z — p/q| = 1/M¢".
Equality cannot hold, because z is irrational. []

A real number z is called a Liouville number if z is irrational and has
the property that for each positive integer n there exist integers p and ¢
such that . V

i

q
For example, z= 37 1,10 is a Liouville number. (Take ¢ = 10™.)

1
<-— and ¢g>1.
q

Theorem 2.3. Every Liouville number is transcendental.

Proof. Suppose some Liouville number = is algebraic, of degree n.
Then n>1, since z is irrational. By Lemma 2.2 there exists a positive
integer M such that

(3) |z —piql > L/My"

for all integers p and g with ¢ > 0. Choose a positive integer k such that
2= 2"M. Because z is a Liouville number there exist integers p and g,



with g > 1, such that
) |lz—p/gl < 1/4".

From (3)and (4) it follows that 1/¢* > |/M¢". Hence M > ¢* " > 2" ">M,
a contradiction. []

Let us examine the set E of Liouville numbers. From the definition
it follows at once that

(5 E=Q' ()G
where Q denotes the set of rational numbers and

G,=Us=2Up= - wlpla—1/q" plg +1/q").

G, 1s a union of open intervals. Moreover, G, includes every number of
thc form p/q, ¢ = 2, hence G, D Q. Therefore G, is a dense open set, and
so its complement is nowhere dense. Since, by (5), E'=Qul )., G,
follows that E' is of first category. Thus Baire's theorem implies tha(
Liouville transcendental numbers exist in every interval, they are the
“general case” in the sense of category.

What about the measure of E? From (5) it follows that ECG, for
every n. Let

Guo=Up=-wp/a=1/q" pla+1/q") (g=2.3,. )
For any two positive mtegers mand n we have =
En(—=m,m)C G,n(—m, m)

=s=2[G, o (=mm)] C Uq 2\Up2 —mgP/g = 1/q", pla+ 1/q").
Therefore En(— m, m) can be covered by a sequenee of intervals the sum
of whose lengths, for any n> 2, is

a= 220t mg2/q" =20 2(2mg + 1) (2/q") S 3 - 2 (Amg +q) (1/q7)

= @m+ 0Y7, Vg sEm ey fr i = AL
It follows that En(—m, m) is a nullset for every m, and thcrefore E is a
nullset.

Thus E is small in the sense of measure, but large in the sense of
category. The sets E and E’ provide another decomposition of the line
into a set of measure zero and a set of first category (cf. Theorem 1.6).
Moreover, the set E is small in an even stronger sense, as we shall now
show. )

If s is a positive real number and E C R, then E is said to have s limen-
sional Hausdorff measure zero if for each £>0 there is a sequence of
intervals I, such that EC ()2 I, Y7 |IIF <e, and |I,| <« for every »
The sets of s-dimensional measure zero constitute a g-ideal. For s=1
it coincides with the class of nullsets, and for 0<s< 1 it is a proper
subclass. The following theorem therefore strengthens the proposition
that E is a nullset.

i wr‘”-”




Theorem 2.4. The set E of Liouville numbers has s-dimensional
Huusdorff measure zero, for cvery s> 0.

Proof. It suffices to find, for each ¢ > 0 and for each positive integer m,
a sequence of intervals I, such that

En(—=mmyc Uz L, 2 |Llf<e, and |I|<e.
For each positive integer n, we have
En(=mmc s s p/g—1/q" . pla + 1/4") .
Choose n so as to satisfy simultaneously the following conditions:

12" '<e, ns>2, Lm+ T <t

Then each of the intervals (p/g — 1/4", p/q + 1/¢") has length 2/¢4" < 2/2" <,
and we have

. su  (2mg+ D2
B3 o X0 U = Ly e
q
dx
S@m+ )220, —=7 SCm+ )2 [Py
X
2 )2
7(}2_+_ﬁ) <e. 1

ns—2



3. Lebesgue Measure in r-Space

By an interval I in Euclidean r-space (r=1, 2,...) is meant a rectangular
parallelepiped with edges parallel to the axes. It is the Cartesian product
ofr 1-dimensionalintervals. Asin the 1-dimensional case, the r-dimensional
volume of I will be denoted by |I|. Lebesgue measure in r-space is an
extension of the notion of.volume to a larger class of sets. Thus Lebesgue
measure has a different meaning in spaces of different dimension.
However, since we shall usually regard the dimension as fixed, there is no
need to indicate r explicitly in our notations.

A sequence of intervals I, is said to cover the set A4 if its union con-
tains A. The greatest lower bound of the sums Y_|I], for all sequences
{I,} thac cover A, is called the outer measure of A4; it is denoted by m*(A).
Thus for any subset A of r-space,

m*(A)=inf{¥|I|: ACJI}.

When A belongs to a certain class of sets to be defined presently, m*(A4)
will be called the Lebesgue measure of 4, and denoted by m(A).

The edges of the intervals I, may be closed, open, or half-open, and
the sequence of intervals may be finite or infinite. It may happen that the
series _|I;| diverges for every sequence {I;} that covers A; in this case
m*(A) = oc. In all other cases m*(A) is a nonnegative real number.

This definition can be modified in either or both of two respects
without affecting the value of m*(A4). In the first place, we may require
that the diameters of the intervals I; should all be less than a given
positive number §. This is clear since each interval can be divided into
subintervals of diameter less than & without affecting the sum of their
volumes. Secondly, we may require that all the intervals be open. For
any covering sequence {I;} and ¢>0 we can find open intervals J; such
that I,CJ; and Y |J| <3 ||+ ¢ Hence the greatest lower bound for
open coverings is the same as for all covering sequences.

We shall now deduce a number of properties of outer measure.

Theorem 3.1. If A C B then m*(A) < m*(B).

This is obvious, since any sequence {/;} that covers B also covers 4.



