51:1
L::!
.4(7




i ‘; PROCEEDINGS OF THE THIRD INT%RNATIONAL CONFERENCE ON ?7(-7
;‘ \NUMERICAL METHODS IN GEOMECHANICS /| AACHEN / 2-6 APRIL 197JV /

177
Numerical Methods
in Geomechanics

Aachen 1979

edited by
W.WITTKE

Institute for Foundation Engineering, Soil Mechanics,
Rock Mechanics and Water Ways Construction, Aachen

2

)
/<

VOLUME ONE:

I Theoretical developments
2 Flow and consolidation
3 Constitutive laws

Published on behalf of the International Committee on Numerical Methods
in Geomechanics and of the Institute for Foundation Engineering, Soil Mechanics,
Rock Mechanics and Water Ways Construction, University of Aachen

A.A.BALKEMA / ROTTERDAM | 1979



ORGANIZING COMMITTEES

Conference Committee

1,

Prof.W.Wittke (Chairman), Institut ftir
Grundbau, Bodenmechanik, Felsmechanik
und Verkehrswasserbau, University (RWTH)
Aachen, 5100 Aachen, Germany

. Prof.C.S.Desai, Department of Civil

Engineering, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia
24061, USA

. Prof.G. Gudehus, Institut fiir Boden- und

Felsmechanik, University of Karlsruhe,
7500 Karlsruhe, Germany

. Prof.N. Janbu, Norges Tekniske Hogskole,

Trondheim, Norway

. Dr.Ing.K.KovAri, Eidgentssische Technische

Hochschule, Zurich, Switzerland

. Prof.W. Leins, Institut fur Strassenwesen,

University (RWTH) Aachen, 5100 Aachen,
Germany

. Prof.U.Smoltczyk, Institut fiir Grundbau, )

University of Stuttgart, 7000 Stuttgart,
Germany

. Dr.R.Wolters, Geologisches Landesamt

Nordrhein-Westfalen, Secretary General of
the International Association of Engineering
Geology, 4150 Krefeld, Germany

. Prof.O. C. Zienkiewicz, Department of Civil

Engineering, University of Wales, Swansea,
UK

International Committee for Numerical Methods
in Geomechanics
1;

Prof.C.S.Desai (Chairman), Department of
Civil Engineering, Virginia Polytechnic
Institute and State University, Blacksburg,
Virginia 24061, USA

. Dr.J.T.Christian, Stone & Webster

Engineering Corp., P.O. Box 2325, Boston,
Mass., USA

Prof.J.M.Duncan, Department of Civil
Engineering, University of California,
Berkeley, California 94720, USA

. Prof.Z.Eisenstein, Department of Civil

Engirfégring, University of Alberta,
Edmonton, Alberta, Canada

. Dr.J.Geertsma, Shell Research B.V.,

Volmerlaan 6, Rijswijk, Netherlands

.. Prof.K.Kawamoto, Department of Civil

Engineering, Nagoya University, Nagoya,
Japan

Dr.H.G.Poulos, Department of Civil
Engineering, University of Sydney, Sydney,
Australia

. Prof.C.Viggiani, Department of Foundation

Engineering, University of Napoli, Napoli
80125, Italy

. Prof.W.Wittke, Institut fir Grundbau,

10.

Bodenmechanik, Felsmechanik und
Verkehrswasserbau, University (RWTH)
Aachen, 5100 Aachen, Germany
Dr.C.P.Wroth, Department of Civil
Engineering, University of Cambridge,
Cambridge, UK

The text of the various papers in this volume were set individually
by typists under the supervision of each of the authors concerned.

For the complete set of four volumes, ISBN 90 6191 040 4
For volume 1, ISBN 90 6191 041 2
For volume 2, ISBN 90 6191 042 0
For volume 3, ISBN 90 6191 043 9
For volume 4, ISBN 90 6191 044 7

© 1979 A.A.Balkema, P.O. Box 1675, Rotterdam
Printed in the Netherlands



NUMERICAL METHODS IN GEOMECHANICS /| AACHEN / 1979



Third International Conference on Numerical Methods in Geomechanics / Aachen /2-6 April 1979

Preface

W.WITTKE
Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics
and Water Ways Construction, Aachen, Germany

Within the last few years, a wide range of numerical techniques such
as the finite element, finite difference, integral equation and other
methods have been developed for solution of complex problems in the
various fields of geomechanics.

During the preceding Conferences on Numerical Methods in Geomechanics,
the 1st Conference held in Vicksburg, Mississippi (1972) and the 2nd
Conference in Blacksburg, Virginia (1976), it became apparent that the
numerical methods had developed into an indispensible tool in solving
of geomechanical problems.

Consequently the 3rd International Conference in Aachen, Fed. Rep.
of Germany, April 2 - 6, 1979, which is organized by the Institute for
Foundation Engineering, Soil Mechanics, Rock Mechanics and Water lWays
Construction, University (RWTH) Aachen, attracted the interest of numer-
ous experts all over the world. More than 120 contributions on recent
research projects and successful applications of numerical methods in
soil mechanics, foundation engineering, rock mechanics, geological engi-
neering and related fields of geomechanics have been submitted by experts
from 25 countries. These papers are published in the three volumes of the
Proceedings, which will be distributed before the conference, thus en-
abling for the participants a thorough and detailed preparation for the
various sessions of the conference.

During the preparatory works it was decided to publish a fourth volume
after the conference. This volume will contain interesting discussions
and those papers which were not submitted in due time. There will also
be an alphabetical list of the participants and contributing authors in-
cluded in this latter volume.

I would like to thank all authors and those colleagues chairing the
various sessions of the meeting for their manifold efforts. I would also
like to express my thanks for the considerable support of the members of

the "Conference Committee" namely:

X



Prof. C.S. Desai, Virginia Polytechnic Institute and State
University, Blacksburg

Prof. G. Gudehus, University of Karlsruhe

Prof. N. Janbu, Norges Tekniske Hdgskole, Trondheim

Dr.-Ing. K. Kovari, Eidgendssische Techn. Hochschule Ziirich

Prof. W. Leins, University (RWTH) Aachen

Prof. U. Smoltczyk, University of Stuttgart

Dr. R. Wolters, Geologisches Landesamt Nordrhein-Westfalen, Krefeld

Prof. 0.C. Zienkiewicz, University of Wales, Swansea
as well as of the "International Committee on Numerical Methods in Geo-
mechanics" namely:

Prof. C.S. Desai (Chairman), Virginia Polytechnic Institute and

State University, Blacksburg

Dr. J.T. Christian, Stone & Webster Engg. Corp., Boston

Prof. J.M. Duncan, University of California, Berkeley

Prof. Z. Eisenstein, University of Alberta, Edmonton

Dr. J. Geertsma, Shell Research B.V., Rijsuwijk

Prof. K. Kawamoto, Nagoya University

Dr. H.G. Poulos, University of Sydney

Prof. C. Viggiani, University of Napoli

Dr. C.P. Wroth, University of Cambridge
The assistance of the members of both these Committees was extremely
valuable. Finally I like to express my gratitute to the Conference

Secretary Mr. Dipl.-Ing. W. Rauscher and to the members of my Institute.

March, 1979

W. Wittke
Chairman
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A general procedure for solving three dimensional

elasticity problems in geomechanics

G.AYALA & R.GOMEZ
Instituto de Ingenierfa, UNAM, Mexico

1 INTRODUCTION

Many practical problems in geomechanics
and geodynamics, specially those
encountered in foundation and earthquake
engineering deal with regions containing
inhomogeneities delineated within a semi-
infinite body. The governing equations
for these problems are those of the three
dimensional theory of elasticity defined
over an unbounded domain. Due to this
characteristic, the application of a
unique numerical procedure is not possible
unless restrictive assumptions are imposed
in the analysis. For this, a promising
alternative that can handle regions of
infinite extent is the simultaneous use of
finite elements and boundary elements.

Different ways of connecting finite
elements to boundary elements have
recently been proposed (Shaw 1977). In
all the cases the formulations have been
based on the definition of a variational
principle, restricting the numerical
method of solution to the minimization of
a given functional. 1In this paper the
finite element method and a new class of
the boundary element methods for three
dimensional elasticity are introduced as
general solution procedures directly
derived from the universally known princi-
ple of virtual work. It is shown that
since this principle can be viewed as a
general statement of the method of weighted
residuals for three dimensional elasticity,
the true potentiality of the finite and
boundary elements may be fully exploited
by using the different modalities of the
method e.g.the conventional boundary
element method is derived by using a nodal
collocation approach.

In order to obtain the best results
within the limitations of the proposed

- vapﬂf;ximation and to be compatible with

existent finite element computer
programmes a Galerkin approach for the
boundary element method is presented. It
is proved that for formulations not
requiring integration by parts the
application of the method of Galerkin is -
numerically equivalent to the method of
orthogonal collocation, and that in the
latter case the number of calculations is
drastically reduced.

Boundaries extending to infinity may be
modelled by using boundary elements of
semi-infinite extent which approximate
conditions in the far field., Discontinuities
on the boundary stresses such as those
found along the edges of foundation mat
are handled by using double numeration of
nodes plus a continuity condition for the
displacements.

The consistency of the entire formul-
ation makes the coupling of finite elements
and boundary elements straightforward. In
the solution strategy the interface
between the region with inhomogeneities
and the rest of the earth is considered as
a boundary separating an interior region,
where finite elements are practicable,
from an exterior one whose characteris-
tics are simple enough to admit the use of
boundary elements.

An application is devised where the
overall problem of interaction arch dam-
foundation-reservoir is analized. To the
authors' knowledge this problem has not
been discussed previously in the literature.
A further simplification is foreseen by
using asymptotic expansions of the
fundamental solutions employed in the
approximation. This simplification renders
boundary elements for which boundary
conditions are approximated locally.



2 NUMERICAL FORMULATION

Consider an elastic body in equilibrium
occupying a volume V and limited by the
boundary S. The fundamental equations of
the theory of three dimensional elasticity
which govern its behaviour are

a) Equilibrium equations

BOIJ .
+ - =0
At By - ey (1)
b) Stress-strain relationships
_ au
%~ Be. (2)
1)
c¢) Strain-displacement
relationships
1 Bui Buj
e o= 5 (m— + =) (3)
where HJ 2 ij 3xi
Eij strain tensor
O;. stress tensor
B.” body force vector per unit volume
u' strain energy density function
expressed in terms of strain
components
uj displacement vector
o mass density

The boundary conditions associated with
this problem may be written 1) for the
part of the boundary with prescribed
tractions ( SCr ), as

t, = Oijni -t (4)

where ?i are the prescribed tractions
and n. is a unit vector normal to the
surface at the considered point, and, for

the part of the boundary with prescrlbed
displacements (S ) u

u, = u. (5)

i i
where G} are the prescribed displacements.
An approximate solution for the problem

given in eqs 1 to 5 may be efficiently
obtained combining a physical principle
with an approximate solution method, i.e.
the principle of virtual work and
Galerkin's method, As shown further on,
such analogy allows the simultaneous
establishment of the finite element method
and the boundary integral method. If one
considers that u.,0.. and €., are
independent functlon&, the-%r1nc1ple of
virtual work for an elastic body is
defined as

fffv (——7~4B ou. )6uidV+fffV(0. N

au.
BE ) §E dV + ‘fJV (Eij v

n.-tJ)6u.dS-/ (u. -u,)8t.dS
S ij i i s i 1 i
(0]

u

where § is the variation of the considered

function.

NB. The above equation contains all the
fundamental equations previously defined.

Duncan (1938) demonstrates that the
principle of virtual work may be used as
the fundamental equation for the numerical
formulation of static and dynamic problems
of deformable bodies. He shows that this
principle turns out to be equivalent to
the formulation of Galerkin's method with
weighting functions obtained from the
approximate solution in such a way that
the product of the residual times the
weighting function has work units.
Imposing the condition that the functions
u, .. and €., satisfy identically the
stressLstraln and strain-displacements
relationships, the principle of virtual
work (Galerkin's method) reduces to

fJf(

'& pu ) Su, dV— f(t - tpdu ds -
S
J

a
~ g' @; - uy dt.ds (7)

u
2.1 Finite element method

The difficulty in obtaining approximate
solutions for problems with complicated
boundary conditions using direct methods

of solution has given rise to the extensive
use of the finite element method (Zienkie-
wicz 1977). This consists basically in the
discretization of the region under study
into a finite number of subregions called
finite elements. The overall approximation
of the problem is attained using functions
localised within each element and which
satisfy continuity requirements in the
interior boundaries. For a linear elastic
medium it may be shown that after integra-
tion by parts of the volume integral, the
principle of virtual work leads to a weak
formulation of Galerkin's method,

Buk 86ui Bui aéui 3ui3ui .
”f[)"‘ax_k__ax.+ o w e *obe ]
J | J 2 i
(8)
dv =, ?icsuids +/J1, F.8u . dv -f(ui-ul.)cStidS

S S
o u
For a finite element the displacement



vector may be approximated as
u, =¢.,U 9)

where ¢|2 (x ) are interpolation
functions satls ying displacement boundary
conditions, and U the degrees of
freedom representing the nodal values of
the displacement vector which are the
unknowns of the formulation.

Substituting the approximate solution
given by eq 9 in eq 8 and taking into
account that the variations of the
displacement vector are given by the
interpolation functions used in the
definition of eq 9, it is found that

Mg Wi By 9. - Bbpy
9x X +8 (Bx X & 9x
i kK 9% K

fff[x )

EL
km es
i ﬂdv Up + SIS 09, 9 @V U

o = (10)
= J

S
whigh may be concisely expressed as

ti¢imds + I Fi¢im dv

k + =

amle * Mom Yg = P (1)
where K¢ is the stlffness matrix, Mg the
mass matrix , and p_ the load vector

of the element

If the previous formulation is applied
each finite element in the region and an
assemblage of their contributions is per-
formed, the following system of equations
is obtained

KU + My = P (12)

where K is the global stiffness matrix, M
is the global mass matrix, and P the

global load vector of the entire region.

2.2 Boundary integral method

As in the finite element method, the
boundary integral method (also referred to
in the literature as the Trefftz method or
the boundary element method) may be

formulated in a %eneral way from the
principle of virtual work.

If the functions u; and0;; satisfy, a
priori, the equilibrium equatlons in the
interior of a- elastic body but do not
satisfy the boundary conditions (Trefftz
1926), the principle of virtual work given
by eq 7 reads as

It —E})aui 0 (13}

J -f(ui-%)6%=

g su

From a numerical point of view, eq 13 1s
equivalent to the application of "Galerkin's
method, where only the boundary conditions
need be enforeced as the functions which
approximate the solution uj satisfy the
differential equations of equilibrium. As
in the case of finite elements, the global
approximation of the problem is difficult
and hence it is convenient to divide the
boundary S into subregions and apply eq 13
to each one.

The approximation of the functions
in eq 13 may be carried out using the
superposition of elemental solutions or
Green functions distributed over an auxil-
iary surface which may or may not coincide
with the boundary of the body. The
knowledge of elemental solutions which, as
well as satisfying the equilibrium
equations of the system, also satlsfy some
boundary conditions (e.g. Mindlin's so-
lution for a concentrated load within an
elastic halfspace) generally simplify the
application of eq 13. Unfortunatelysthe
scarcity of these solutions and the
difficulties involved in obtaining them
generally leads to the use of elemental
solutions for static or dynamic
concentrated loads within an unbounded
elastic body

Using the auxiliary surface (S,) which
does not coincide with the boundary, the
displacement vector may be defined as the
single layer potential (Cruse 1977)

u. (xk)-f G. ( Xy, ) 4 (yk)dS (14)
A
where
Gy s i component of the displacement
J function at the point x| due to a
unit force in j direction applied
at point y
k
d. load density function in direction
J j defined on the auxiliary surface
Yy point on the auxiliary force
The stress tensor associated to Gij may
be written from Hooke's law as
GQ. Gias
T =X =2L8., +6 (—2L+
ijm Bxl i 9x
m
(15)
BGm.
* ax )

Hence, the stress tensor Oi‘ associated
with u. may be defined as theldouble layer
potential



%im =Sf o (x
A

(16)

o) 45ly) ds

In order to evaluate eqs 14 and 16 it is
convenient to divide the auxiliary surface
S, into subregions using the same number of
nodal points that for the real boundary and
for each of these elements the load density
dj may be approximated as

dj = 95,0 (17)
where ¢;o are interpolation functions de-
fined oVer the considered boundary element
and Dl the nodal values of the load density.

Substituting eqs 14, 16 and 17 in eq 13,

an approximation is found for the principle
of virtual work given by

J z ;’[Tijm (xk,yk) nm¢j2dSD - tJduidS-

[
o A
—Sf z sf [G|j(xk,yk) ¢j£dso2 - ui]
u A
8t ds = 0 (18)

The prescribed functions T. and u; jmay be
represented in an approximate way using
interpolation functions §., defined within

each element on the boundary S. So that
for an element, we have
ti n dDinTn (19)
u. =¢. U

i inn

where T and U_ represent the prescribed
nodal vhlues of the functions t. and u,,
respectively. For a given boundary element,
eq 18 may be written

SI[E I T im oYy mpd50dS D
o A
= ainTn ] GuidS (20)

TR
i . ij (xk yk) ¢ dS D + ¢|nun]
u A
(StidS=

NB, If eq 20 is considered as a general

expression for the weighted residuals meth
od, the method of nodal collocation re-
quires the use of weighting functions de-
fined as

§ = - X
ty = 804 - x)
(21)
_ o
(Sui = Gi(xk = xk)
where 8. is the Dirac delta and X* the

coordinates of the nodal point o of the
element (collocation points).

The inclusion of eq 21 in eq 20 gives
rise to a formulation equivalent to the in
direct boundary element method, where the
boundary and the solution are defined in
different surfaces, thus

o
z ;' Tijm (xk,yk) nm¢j£dS Dl =
o
- T k) = (22)
a o
z Sf Gij (xk,yk) ¢J.2dS DJZ,-Ui(xk) =0 (23)
A

From the previous paragraphs it may be
concluded that the numerical formulation
given by eq 20 is general, as the selection
of different weighting functions leads to
diverse versions of the weighted residual
method.

In the case of Galerkin's method, the

functions Gui and §t, on the boundary S are
given by .
Gui k1 (24)
Sti = %in (25)

Substituting eqs 24 and 25 in eq 20 we get

ST ST, (x
S _-§,. . dm
o A

k,yk) nm¢ 45,00, dS -

f ¢. ¢. T dS - f Z S G .

inipn
0 u

kY

¢szsADQ¢ipds +-J ¢in¢ipunds =0 (26)

u



or, in compact form.

a D,-¢c T -b D, +c U =0

pL e pn n pL L (27)

(2

]
-
-
N
-

P = V2pesa ;M

where N is the total number of nodal
values of the load density applied on the
auxiliary surface S, and M the number of
degrees of freedom in the considered
boundary element.

Eq 26 allows a boundary element to have
stress and displacement restrictions
simultaneously. However, if only dis-
placement boundary conditions exist , we
have

-b D,+c U =0

pL L pn'n (28)

and if only stress boundary conditions,
we have

aplol - CpnTn =0
The assemblage of the corresponding
contributions of each boundary element
gives a matrix equation similar to that
resulting from the application of the
finite element method, which is

(29)

_(30)
A..D, -B,.D. = axiliy = € Ui
1)) 1) 1) J 1] )

158 = 120 s N

where the matrices A.., B.. and C.. are
the overall matrices %Asul%ing frofid the
assemblage of eq 27 for each element. Thus,
in order to solve the problem set out in
previous paragraphs the solution of an
asymmetric system of linear equations is
required. Once this equation is solved
the formulation to obtain forces and dis-
placements at any point within the body is
derived directly from the discrete
version of eqs 14 and 16

= 2

S

u. (x

i K Gij(xk,yk)tbjl%ds (31)

oij(xk)=isf Tijm(xk,ykmjyvl)lds (32)

An alternative for the approximate so-
lution of eq 13 is to consider that the
auxiliary surface on which the potentials
in eqs 14 and 16 are defined coincides
with the boundary of the body. In this

case it is necessary to consider the dis-
continuity of the double layer potential
when the auxiliary surface approaches the
boundary S. This problem has been tackled
by Cruse (1977) who found that the single
layer potential does not change, i. e.

005 = L85 (q0n)d;(n)es (33

However, the double layer potential has
a discontinuity on the boundary S measured
by

[S1a 00 = i3, ] ny = 2855 (x,) (31)

So that eq 16 becomes
(35)

oim(xk) .- ij (xk) + Js' Tijm(xk’yx)nmdj (xk)dS

where

% if Yie ™ X from inside the body

; if Y Xy from outside the body

As in the case in which the auxiliary
surface did not coincide with the bounda-
ry S, eqs 33 and 35 provide an exact so-
lution for y. and 0. . The errors which
may exist ard due to"the approximation of
the function d.(xk) as a stepwise
function

3. TREATMENT OF INFINITE BOUNDARIES

Quite a common situation in the numerical

formulation of geomechanic problems is the
existence of regions limited by boundaries
which extend to such distances that makes

impractical, and on occasions impossible,

the direct application of discrete methods
of the boundary element type.

This difficulty, which also appears in
applications of the finite element method
may be overcome by using boundary elements
specially designed to model conditions at
infinity.

In this paper it is proposed to use
boundary elements of the type used by Ayala
(1973),for applications of the finite ele-
ment method to wave propagation problems.

A typical geometry for a plane boundary
element, here called semi-infinite, is
shown in fig 1. This type of element is
connected to the conventional boundary
elements along the side x; = O.
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In the same way as finite elements, the
interpolation functions may be defined by
Lagrange polynomials. However, in order
to guarantee that the integrals of eq 13
tend to a finite value, it is necessary to
multiply the interpolation functions by
functions with asymptotic behaviour. For
example, the interpolation functions for a
boundary element such as that in fig 1,
may be defined as a combination of
Lagrange polynomials in the direction xj
and interpolation functions defined along
the axis xj as

_—
C et B )

- Jooxi

{ Voo - x)) (36)
1

i=1,2,...,N-1

where L is a parameter which measures the
rate at which the exponential function
decays.

The interpolation function
is obtained from

N-1

NN =1 - F N. 37
j=1

For elements of distorted form it is
possible to define a parametric represen-
tation similar to that employed in iso-
parametric finite and boundary elements.

4, EQUIVALENCE OF GALERKIN'S METHOD AND
THE METHOD OF ORTHOGONAL COLLOCATION

The analytical evaluation of the integrals
in eq 26 is not practical because of the
complexity of the kernels. An alternative
way of carrying out these integrations is
to use the ideas of numerical integration
commonly employed in the finite element
method.

The numerical integration of eq 26 is
obtained by replacing the integrals over
S and S, by their numerical quadratures.
If only éhe numerical integration over S
is shown, we have

[o 2 o G
ZSI Tijm(xk, v, ) nm¢jl(yk)dSDJL¢ip(xk)w
A

(o1 Oy 40k,
- ¢in(xk)¢ip(xk)w T =
Oy 6l
=TS G 000 V) 65 (v, )dSDeg (W +
¢in(xz)¢ip(xz)waun =0 (38)

where the superscript o indicates the
considered integration point and W% the
corresponding weighting factor.

For simplicity, eq 38 can be written as
Oy, O a Oy, O
Ei20£¢ip(xk)w ¢in(xk)7n¢ip(xk)w -

(39)
a, o o oy, O
- Fi202¢ip(xk)w + ¢in(xk)un¢ip(xk)w =0

where
o
fg=% ¢ T imevid i o (1 )dS can)
A
a
Fig = Z ;' Gij(xk’yk)¢j£(yk)ds (41)
A

Notice that the number of operations
involved in eq 39 is excessive., This
disadvantage, however, may be overcome if
instead of Galerkin's method another
version of the method of weighted residuals
-known as orthogonal collocation-is used.
In this method the weighting functions are
Dirac deltas evaluated at points corre-
sponding to the zeros of the Legendre
polynomials, which for boundary elements
coincide with the points of Gaussian
integration, x; . For semi-infinite ele-
ments the points of collocation are the
zeros of the Laguerre polynomials.

The application of the method of or-
thogonal collocation in eq 20 leads to



