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Preface

This book is the proceedings of the conference ” Algebraic Geometry
in East Asia” which was held in International Institute for Advanced Studies
(IIAS) (9-3 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0225, Japan), during
August 3 to August 10, 2001. The conference was partially supported by Grants-
in-Aid for Scientific Researches ((A) (1) 11304001 by Sampei Usui and (B) (2)
13440008 by Atsushi Moriwaki).

Although many east Asian mathematicians now play a leading role in the inter-
national mathematical community, in modern times mathematics did not become
a strength of east Asian scholarship until the early 20’th century. In particular, as
a consequence of this relatively short history, the various east Asian mathemati-
cal communities, such as the algebraic geometers represented at this conference,
have had less of a chance to meet and exchange ideas as their western counter-
parts. Accordingly, one of the primary goals of the conference was to facilitate
such an exchange.

As the breadth of the topics covered in this proceedings demonstrate, the con-
ference was indeed successful in assembling a wide spectrum of east Asian math-
ematicians, and gave them a welcome chance to discuss current state of algebraic
geometry. It is the first time that such a conference has been held in algebraic
geometry, and we hope that it is but the start of continuing tradition.

We wish to thank, first of all, the lecturers for their beautiful talks. We also
wish to thank the participants for their cooperation and providing stimulating
atmosphere.

During the conference, administrative staffs in IIAS as well as many graduate
students from Osaka University and Kyoto University helped us. Without them,
the conference would have been less successful than we had hoped for.

In particular, we wish to thank Ms. Yoshiko Kusaki and Ms. Minako Tanaka,
of the IIAS as well as the following graduate students from Osaka and Kyoto
Universities: Mr. Masao Aoki, Mr. Takeshi Harui, Mr. Atsushi Ikeda, Mr.
Michiaki Inaba, Mr. Tomokazu Kawahara, Mr. Hiraku Kawanoe, Mr. Shinya
Kitagawa, Mr. Masaaki Murakami, Mr. Hiroto Nakayama, Ms. Noriko Tsuda
and Mr. Daisuke Yanase.

Finally, we would like to thank Prof. Junjiro Kanamori, the Director of IIAS,
for his dignified opening speech.

Organizers

Akira Ohbuchi(Chief)
Kazuhiro Konno
Atsushi Moriwaki
Noboru Nakayama,
Sampei Usui
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INTRODUCTION

This note was first written in Japanese for intensive lectures of Arakelov geometry
organized by Moriwaki from December 8 to December 10, 1998 at Kyoto University.
These lectures were intended to give an overview of Arakelov geometry and a proof
of Bogomolov’s conjecture for general algebraic geometers. From that time, we
have considered that this note should be available for not only Japanese but also a
broader range of readers. We, however, had no chance to translate it into English.
Fortunately, during the meeting “Algebraic Geometry in East Asia,” Professor Usui
recommended its translation. Here we would like to express hearty thanks for his
proposal.

The final goal of this note is a generalization of conjectures of Bogomolov and
Lang. For this purpose, in the first part, we introduce “Arithmetic Chow group”
and “Arithmetic Riemann-Roch theorem,” in which we do not give a rigorous proof
for every result, but we believe that this is a good introduction of Arakelov geometry.
In the middle part, we consider “Existence of a small section,” “Adelic metric and
admissible pairing” and “Arithmetic height function,” in which several techniques
of Arakelov geometry are used. In the final part, we give a proof of Bogomolov’s
conjecture and a generalization of conjectures of Bogomolov and Lang.

Here we would like to explain a generalization of conjectures of Bogomolov and
Lang in the case of a curve and its Jacobian. Let K be a number field, X a geomet-
rically irreducible projective curve of genus greater than or equal to 2 over K, and
J the Jacobian of X. Let us fix an embedding ¢ : X (K) — J(K) and a Néron-Tate
pairing

(,):J(K)xJ(K)—R.
Let I be a subgroup of J(K) with dimg'®Q < co. Let (T®R)* be the orthogonal
complement of ' ® R in J(K) ® R in terms of the Néron-Tate pairing. Let ¢p :
X(K) — (I ® R)* be the compositions of maps

XE) —— JE) — JE)@R 2N, T @R)L,

Then, a generalization of conjectures of Bogomolov and Lang says that the fiber of
¢r is finite and the image of 1 is a discrete subset of (' @ R)* in terms of the metric
arising from the Néron-Tate pairing. If we consider the case I' = J(K), then the
first assertion is nothing more than Mordell’s conjecture. Moreover, if we consider
the case I' = {0}, then we have Bogomolov’s conjecture.

81, §2, §3 and §7 were written by Kawaguchi, §4 by Yamaki, and §5 and §6 by
Moriwaki. We hope that this note will be useful for anyone who wants to know
Arakelov geometry.

1. ARITHMETIC CHOW GROUP

1.1. Introduction. In the Arakelov geometry, one considers, roughly speaking,
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”

instead of algebraic varieties over a field

)

e vector bundles with “metrics at infinity,” instead of vector bundles.
Szpiro [34] wrote about the Arakelov geometry that

Put metrics at infinity on vector bundles and you will have a geo-
metric intuition of compact varieties to help you.

Let us see this analogy by comparing a compact Riemann surface with Spec(Z).

Let X be a compact Riemann surface.

(A)

(©

Let f be a nonzero rational function on X. Then we have

div(f) = Y u(f) - [p) € P Z- [p] =: Div(X).

peEX peX
It follows from the residue formula that
deg(f) = ) up(f) =0.
peX

Set Rat(X) = {div(f) | f € C(X)*} C Div(X), and CH!}(X) = Div(X)/ Rat(X).
Then the map deg : Div(X) — Z induces the map deg : CH!(X) — Z.
Let L be a holomorphic line bundle over X, and s a nonzero rational section

of L. Put
div(s) = > vy(s) - [p] € CH'(X).
pEX
Then, as an element of CH!(X), div(s) depends only on L, i.e., it is inde-
pendent of the choice of s.
Let Pic(X) be the set of isomorphism classes of holomorphic line bundles
over X. Then, we have the isomorphism

c1 : Pic(X) — CHY(X), L~ div(s),

where s is any nonzero rational section of L. In particular, through this
isomorphism, deg : Pic(X) — Z is defined.

Next, we consider X = Spec(Z).

(A)

Since we consider a scheme at “infinity,” let us set

Div(X)=| P Z-[p] | ®R-[c0].

p:prime
Let f € Q be a nonzero rational number. We set
voo(f) = —log | f|* € R,
div(f) = 3 wp(f)- [Pl + veol ) - [oo] € Div().

p:prime
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We define ge\g : ISE(X) — R by

Z np - [p] +a- [oo] — Z nplogp+%a.

p:prime p:prime

It follows from the product formula that

deg(@V(f) = Y wplf)logp -+ 5vee(f) =0.

p:prime

(In this case, the product formula is an obvious consequence of the prime
factorization.) Set

Rat(X) = {div(f) | f € @\ {0}} c Div(¥)

—1 e e ——
and CH (X) = Div(X)/Rat(X). Then the map deg : Div(X) — Z induces
the map cTe\g : aﬁl(/\f') — Z.
(B’) Let £ be a line bundle over X. Since we consider a “metric at infinity,” let
us take a hermitian metric

h:ﬁcxﬁc—ﬂc

on L¢ = L ®z C. We denote the pair (£, h) by Z, and call it a hermitian
line bundle.
Let s be a nonzero rational section of £. Put

divis) = 3 vp(s) - [p] + (— log h(sc, sc)) - [o0] € CH (X).

p:prime

Then, as an element of éﬁl(x\f’), (T;'(s) depends only on L, i.e., it is inde-
pendent of the choice of s.

(C’) Two hermitian line bundles £; = (£1,h1) and Ly = (L2, hg) are said to be
isomorphic if there exist an isomorphism ¢ : £1 — L2 of line bundles such
that the induced map ¢¢ : (Lic, h1) — (Lac, he) is an isometry.

Let 151\0(.;\? ) be the set of isomorphism classes of hermitian line bundles
over X. Then

. | _ .
¢ : Pic(X) - CH (&), L +— div(s)
is an isomorphism, where s is any nonzero rational section of £ (cf. Propo-

sition 1.3.4). In particular, through this isomorphism, &% : ﬁl\c(z\f’ ) — Zis
defined.

To sum up, by adding “infinity” to Spec(Z) and considering hermitian line bundles
over Spec(Z), one has the degree map deg for Spec(Z), similar to the degree map deg
for a compact Riemann surface, in the sense that deg(div(f)) =0 for f € Q) {0}.
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Such an analogy between the ring of integers of a number field and a compact
Riemann surface have been noted by many mathematicians such as Hasse and Weil
to name a few. Arakelov [2] generalized this analogy to a 2-dimensional case, and
established the intersection theory on arithmetic surfaces, which corresponds to that
on projective surfaces over C. Then, Faltings proved in [5] among other things a
Riemann-Roch theorem on arithmetic surfaces. Gillet and Soulé (cf. [9] [11], [3],
[12], [13]) developed its higher dimensional theory, including arithmetic cycles and
their intersections on arithmetic varieties, arithmetic Chern classes of hermitian vec-
tor bundles, and an arithmetic Riemann-Roch theorem. Such theory of arithmetic
varieties is called the Arakelov geometry. We remark that [32] is a good reference
of the Arakelov geometry and [33] is a good quick guide to it.

Let us consider a case of dimension > 2. We set
X = Proj (Z[X,Y, Z)/(Y*Z = X* + X Z?)).

This is an example of arithmetic surfaces (cf. §1.3). To consider “infinity” means to
consider the compact Riemann surface

Xc = Proj (C[X,Y,Z)/(Y?Z - X® - XZ?)).

Moreover, to consider a line bundle with a “metric at infinity” means to consider a
pair £ = (L, h), where L is a line bundle over X and h is a hermitian metric on Lc.

Then, what is ]SR/(X)? The case X = Spec(Z) kept in mind, it would be natural
(undoubtedly with hindsight) to think that

(diV(S), - IOg h(SC, SC))
becomes an “arithmetic divisor” on X, where s is a nonzero section of L.

In what follows, we will give the precise definitions of arithmetic varieties, arith-
metic divisors, the arithmetic Chow groups on an arithmetic variety etc., due to
Gillet and Soulé. In fact, an arithmetic divisor on an arithmetic variety X is a
pair (Z,g) such that Z is a cycle on X and g is a “Green current” on X(C); And
(div(s), —log h(sc, sc)) above is indeed an arithmetic divisor on X. So, let us first
define Green currents in the next subsection.

1.2. Currents. Let X be a d-dimensional compact complex manifold. Let AP:4 (X)
be the space of C* differential forms of type (p,q) on X. We endow AP9(X) with
the compact C° topology: Namely, a sequence {n,} converges to 7o, in AP9(X)
if and only if (1) there exists a compact set K such that for any n the support of
T is contained in K and (2) any order derivation of 7, uniformly converges to the
corresponding derivation of 7.

Definition 1.2.1. We call a continuous linear functional
T: A% P4 9(X) - C
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a current of type (p,q) on X. Let DP9(X) be the set of currents of type (p,q) on
X.

Example 1.2.2. For w € AP9(X), set
[w] : ATPEYX) - C, n— / wA.
X

Then, [w] € DP4(X). Via [] : AP9(X) — DPI(X),w — [w], AP9(X) is regarded as
a subspace of DP9(X).

Example 1.2.3. Let w be a differential form of type (p,q) on X with locally in-
tegrable coefficients. Then, in the same way as in Example 1.2.2, one obtains the
current [w] € DP9(X).

Example 1.2.4. Let X be a non-singular projective variety over C and Y a sub-
variety of X of codimension p. Then, we have the Dirac type current dy € DPP(X)
defined by
Sy : ATPIP(X) - C, ne— [ o,
Yns
where Y™ is the set of non-singular points of Y. Note that, if 7 : Y 5Yisa
resolution of singularities of Y, then the equality dy (n) = ff, 7*(n) holds, and thus

Jyns m converges.

Example 1.2.5. More generally, let Y = >~ noYa (na € Z) be a cycle of codimen-
sion p on X. Then, we have the current dy € DPP(X) defined by dy = >, nady,-

A current T € DPP(X) is said to be real if T(7) = T'(n) for any n € APP(X). For
example, dy as above is a real current.
Let us define differential operators on @, , D%(X). For T' € DPI(X ), we define
OT € DPt14(X) and 8T € DP9+ (X) by
OT(n) = (-1PH**1T(@n)  (n€ ATETDII(X)),
T (n) = (-PHHIT@y)  (ne APETD(X)).
We see from the Stokes theorem that [0w] = 9[w] and [Ow] = J[w] for w € APY(X).
Moreover, we set
d=0+0,
1
4/ -1
Note that dd® = @65. For w € AP9(X), we similarly have [dw] = d[w] and
[d°w] = d°[w].
The pull-back of differential forms induces the push-forward of currents. In-
deed, let 7 : X — Y be a holomorphic map of compact complex manifolds and

¢ = - 9).
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g an element of DP9(X). Then, the push-forward of g, which is an element of
ppdimX—dimYg+dimX-dimY 514 is denoted by m.(g), is defined by m.(g9)(n) =

g(m*n).

Definition 1.2.6 (Green Current). Let X be a compact Kihler manifold and Z ¢ X
a cycle of codimension p. A Green current for Z is a current g € DP~1P~1(X) such
that there exists w € APP(X) with

dd®(g) + 6z = [w].

Let X be a compact Kahler manifold and L a line bundle over X. A C*°-hermitian
metric h on L is a C*°-field of hermitian inner products in the fibers of L. Namely,
for each z € X,

hy :LyxL, —C
is a hermitian inner product, and h, is C* with respect to z. We call L := (L, ) a
C°-hermitian line bundle .

Example 1.2.7. Let X be a smooth projective variety over C, L = (L, h) a C*°-
hermitian line bundle over X, and s a nonzero rational section of L. Then, since

—logh(s, s) is locally 1ntegrable [—log h(s,s)] defines a current in DOO(X) (cf.
Example 1.2.3). The following Poincaré-Lelong formula shows that [ log h(s, s)] is
actually a Green current for div(s).

Theorem 1.2.8 (Poincaré-Lelong formula). Let X be a smooth projective variety
over C, L = (L,h) a C®-hermitian line bundle over X, and s a nonzero rational
section of L. Let c;(L) € AYY(X) be the first Chern form of L. Then, the following
formula holds in DV (X):

(1.2.8.1) dd°[—log h(s, s)] + Saiv(s) = [c1(T))-

Proof: Let d be the dimension of X.

Step 1 The assertion holds if the support of div(s) is a normal crossing divisor.
Indeed, for any p € X, one can take an open neighborhood U of p and local coor-
dinates z1,...,z4 of U such that Supp(div(s)) is locally defined by 2125 - - - 2, = 0.
By the partition of unity and the linearity, it suffices to show that, for any n €
Ad—1d— L(U) with compact support,

/loglzll2 ddcn=/ 7.
U 21=0

We will show this equality in the appendix (cf. Lemma Al).
Step 2 We treat a general case. Set D = div(s). By Hironaka’s theorem [17],
there exists a proper morphism 7 : X — X such that
(i) X is smooth,
(ii) £ = 7*(D)yeq is a normal crossing divisor,
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(i) 7| \supp(z) : X \ SupP(E) — X \ Supp(D) is isomorphic.
On the other hand, we have

/ —logh(s,s) dd°n = /’~ —log m*h(m*s, m*s) dd°(m*n)
X X

/X ca(l)An= /X~ c1(m*L) A ¥,

We write E = D + E’, where D is the strict transform of D. Then dim m(E') <
dim D. Thus, we have

/ 7r“77=/_7r"77+/ 7r*77=/n=/ 7.
div(m*s) D E! D div(s)

Since div(7*s)req is a normal crossing divisor, by Step 1, we obtain the formula in a
general case. 0O

Remark 1.2.9. In relation to the last part of the proof of Theorem 1.2.8, we remark
that, for any morphism 7 : X — Y of compact complex manifolds and cycle Z of
X, we have m,(6z) = 0r,(z)-

In the rest of this subsection, we consider some basic properties of Green currents.

Lemma 1.2.10 (dd®lemma for currents). Let X be a compact Kihler manifold
and n an element of DPP(X). Assume that n is d-ezact. Then, there exists v €
DP=LP=1(X) such that n = dd°.

For its proof, we refer to [14, p149], where the dd°-lemma for C>® differential
forms is proven. Since operators 8,9, G35 for C* differential forms in [14, p149] are
all extended to those for currents, the same argument goes for the dd°-lemma for
currents.

Proposition 1.2.11. Let X be a compact Kaihler manifold. Then, for any cycle Z
of codimension p on X, there exists a Green current for Z.

Proof: Take w € APP(X) which represents Z in the cohomology class. Then,
[w] — dz is d-exact. By the dd°-lemma, there exists a current g € DP~1P~1(X) with
[w] — 0z = dd°g. O

Proposition 1.2.12. Let X be a compact Kdhler manifold and Z a cycle of codimen-
sionp on X. Let g1 and g2 be Green currents for Z. Then, there exist n € APP(X),
u € DP~2P~1(X) and v € DP~1P=2(X) such that

g1 — g2 = [n] + Ou + Ov.



10 SHU KAWAGUCHI, ATSUSHI MORIWAKI AND KAZUHIKO YAMAKI

Proof: For ¢ = 1,2, write dd°(g;) + dy = [w;] for some w; € APP(X). Then, we
have %aé(gl — g2) = [w1 — wa]. Then, the assertion follows from the following
lemma. O

Lemma 1.2.13. Let X be a compact Kihler manifold and g an element of DP4(X).
Assume that 09g is C®, i.e., 00g = [w] for some w € APY1V9tL(X). Then, there
erist n € AP9(X), v € DP~19(X) and v € DP9 1(X) such that

g = [n] + Ou + dv.

Proof: By [14, p385)], d, 9, 8-cohomology of currents coincide with d, 8,
0-cohomology of C* differential forms.

Thus, if 99g = [w] for some w € AP19+1( X)) then there exists a C* differential
form a with w = da. Since 3(9g — [@]) = 0, there exist a C* differential form 3 and
a current g; such that dg—[a] = [8]+0g;. Thus, 39g; = dla+ ] = [0(a+p)], where
g1 is a current of type (p— 1, ¢+ 1). By iterating this procedure, we get a current g,
of type (p —n,g+n) and a C* differential form a,, that satisfy 9g, = [an] + Ogn41
(n>1).

Since gn41 = 0 for n > p, we have dg, = [an]. Since aj, is a C* differential form,
there exists a C*° differential form 7, with g, = [,]+0v,. Then, since 8(gn_1+0v,)
= [an-1] + 0g9n — 0(gn — [Mm]) = [an—1] + O[nx], there exists a C* differential form
Nn-1 With gn—1 = [9n—1] + Oun—1 + Ovn_1. By iterating this procedure, we get
g = [n] + Ou + Ov for some C* differential form 7. O

In Example 1.2.7, a C*-hermitian line bundle L = (L, h) and a nonzero rational
section s of L determine a Green current for the divisor div(s). The next proposition
shows that the converse also holds.

Proposition 1.2.14. Let X be a smooth projective variety over C and D a divisor
on X. Let s be a rational section of Ox(D) with div(s) = D. Let g be a Green
current for D. Then, there exist a C*°-hermitian metric h over Ox (D) with

g = [—log h(s, s)].

Proof: Take any C°-hermitian metric A’ on Ox (D). By Example 1.2.7,
[— log k' (s, s)] is a Green current for D. Since D is a divisor, by Proposition 1.2.12,
there exists a C*° function f with

g —[~logh'(s,s)] = [f].
Set h = exp(—f)h'. Then, h is a desired C*°-hermitian metric over Ox (D). 0



