

Carbohydrates

The Essential Molecules of Life

Robert V. Stick • Spencer J. Williams

0629.1

Carbohydrates: The Essential Molecules of Life

Second Edition

Robert V. Stick

School of Biomedical, Biomolecular and Chemical Sciences The University of Western Australia 35 Stirling Hwy Crawley Western Australia 6009 Australia

Spencer J. Williams

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne 30 Flemington Rd Parkville Victoria 3010 Australia

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2001 Second edition 2009

Copyright © 2009 Elsevier Ltd. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-240-52118-3

For information on all Elsevier publications visit our website at elsevierdirect.com

Printed and bound in Great Britain 08 09 10 11 12 10 9 8 7 6 5 4 3 2

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

Carbohydrates: The Essential Molecules of Life

The front cover shows a representation of the solution structure of a heparin fragment, determined by NMR spectroscopy (Protein Data Bank code: 1hpn).

For Rob, unrealized artist

Also, in memory of Bruce Stone and his beloved 1,3- β -glucans and wattle-bloom arabinogalactan proteins

Preface and Acknowledgements

The year 2000 marked a watershed in the sciences with the sequencing of the human genome. Along with other sequencing efforts, we now know the blueprint for life in an ever-increasing number of organisms. Not unexpectedly, whole new areas of science have flourished: genomics, ribonomics, proteomics, metabolomics and, not to be left out, glycomics. Glycomics has been defined as 'the functional study of carbohydrates in living organisms' (de Paz, J. L. and Seeberger, P. H. *QSAR Comb. Sci.*, 2006, **25**, 1027).

Glycomics would not have even been considered a century ago because carbohydrates and, in particular the sugars, were viewed simply as essential molecules for the survival of most organisms. For example, sucrose and glucose provided energy, starch stored energy, and cellulose was responsible for structure and strength. Decades of research then provided novel carbohydrate structures where the function was not always obvious. What were these molecules doing in the world of biology, often being present on the surface of bacteria, viruses and cancer cells, the vanguard of these life forms?

Well, these molecules have a function, and it is now recognized that carbohydrate–protein and even carbohydrate–carbohydrate interactions are of fundamental importance in modulating protein structure and localization, signalling in multicellular systems and cell–cell recognition, including bacterial and viral infection processes, inflammation and aspects of cancer. Some of these carbohydrates have high molecular weights and, not surprisingly, complex chemical structures that challenge the chemists, biochemists and biologists. A pertinent example would be that of the N-glycans, complex molecules in which the carbohydrate is linked, through nitrogen, to a peptide chain (thus forming a glycopeptide or glycoprotein); a small change in the structure of the carbohydrate can lead to all sorts of human diseases.

This book will provide all of the background for a successful study of carbohydrates. Also, it will give a taste for the subject of glycobiology, concentrating especially on the structures and the biosynthesis of carbohydrates and glycoconjugates, and to a lesser extent on their function. A question often asked is 'Why study carbohydrate chemistry?'. The answer is simple: 'It is fundamental to the study of biology'. An organic chemist trained in carbohydrates will move smoothly into the

worlds of biochemistry, molecular biology and cell biology; the reverse is much more difficult.

We are indebted, in particular, to David Vocadlo, and to Steve Withers, Harry Brumer III, Adrian Scaffidi, Andrew Watts, Keith Stubbs, Ethan Goddard-Borger, Tanja Wrodnigg, Arnold Stütz and Malcolm McConville for insightful comments into the structure and content of this new book. Also, Keith Stubbs, Adrian Scaffidi, Ethan Goddard-Borger and Nathan McGill spent tireless hours in the proofreading of the manuscript and made many useful suggestions. Frieder Lichtenthaler is again thanked for the photographs of Fischer. RVS acknowledges the hospitality of the Institut für Organische Chemie, Technische Universität Graz and the Institut für Chemie, Karl-Franzens Universität Graz in the writing of part of the manuscript. SJW thanks his wife Jilliame for her patience and support through the writing of this book.

Robert Stick and Spencer Williams

Abbreviations

Ac acetyl

AIBN 2,2′-azobis(isobutyronitrile)

All allyl (prop-2-enyl)

AMP/ADP/ATP adenosine 5'-mono/di/triphosphate

Ar aryl

ATIII antithrombin III

BMS tert-butyldimethylsilyl
Bn benzyl (phenylmethyl)
Boc tert-butoxycarbonyl
BPS tert-butyldiphenylsilyl

Bz benzoyl

CAN cerium(IV) ammonium nitrate

Cbz benzyloxycarbonyl

 C_6H_{11} cyclohexyl ClAc chloroacetyl

CMP/CDP/CTP cytidine 5'-mono/di/triphosphate

CoA coenzyme A

CSA camphor-10-sulfonic acid
DABCO 1,4-diazabicyclo[2.2.2]octane
DAST (diethylamino)sulfur trifluoride
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCC N,N'-dicyclohexylcarbodiimide

DCE 1,2-dichloroethane

DDO 2,3-dichloro-5,6-dicyanobenzoquinone

DEAD diethyl azodicarboxylate
DIAD diisopropyl azodicarboxylate
DMAP 4-(dimethylamino)pyridine

DMDO dimethyldioxirane
DME 1,2-dimethoxyethane
DMF dimethylformamide
DMSO dimethyl sulfoxide

DMTST dimethyl(methylthio)sulfonium triflate

DNP 2,4-dinitrophenyl

DTBMP 2,6-di-tert-butyl-4-methylpyridine

DTBP '2,6-di-tert-butylpyridine

DTPM (dimethyltrioxopyrimidinylidene)methyl

DTT 1,4-dithiothreitol
ER endoplasmic reticulum

ERAD endoplasmic reticulum–associated degradation

FADH flavin adenine dinucleotide Fmoc 9-fluorenylmethoxycarbonyl

GAG glycosaminoglycan GH glycoside hydrolase

GMP/GDP/GTP guanosine 5'-mono/di/triphosphate glycosylphosphatidylinositol

GT glycosyltransferase

HIT heparin-induced thrombocytopenia

HIV human immunovirus

HMPA hexamethylphosphoramide IDC iodonium dicollidine

Im 1-imidazolyl

IPTG isopropyl 1-thio-β-D-galactopyranoside

KLH keyhole limpet hemocyanin LDA lithium diisopropylamide Lev levulinyl (4-oxopentanoyl)

LPG lipophosphoglycan LPS lipopolysaccharide

mCPBA 3(meta)-chloroperbenzoic acid Ms mesyl (methanesulfonyl)

NADH nicotinamide adenine dinucleotide

NADPH nicotinamide adenine dinucleotide phosphate

NBS N-bromosuccinimide
NIS N-iodosuccinimide

NMO *N*-methylmorpholine *N*-oxide

Ns 4-nitrobenzenesulfonyl

PAPS 3'-phosphoadenosine-5'-phosphosulfate

PCC pyridinium chlorochromate
PDC pyridinium dichromate
PEG poly(ethylene glycol)
PEP phosphoenolpyruvate

Ph phenyl Phth phthalyl

PI phosphatidylinositol

Piv pivalyl (2,2-dimethylpropanoyl)

PLP pyridoxal-5'-phosphate pMB 4(para)-methoxybenzyl pNP 4(para)-nitrophenyl

pTSA 4(para)-toluenesulfonic acid

py pyridine

rt room temperature

SF selectfluor {1-chloromethyl-4-fluoro-1,4-diazoniabicyclo

[2.2.2]octane bis(tetrafluoroborate)}

TBP 2,4,6-tri-*tert*-butylpyridine

TCP tetrachlorophthalyl TDS thexyldimethylsilyl

TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl triflyl (trifluoromethanesulfonyl)

THF tetrahydrofuran
THP tetrahydropyran-2-yl
TIPS triisopropylsilyl

TMP 2,2,6,6-tetramethylpiperidide

Tol tolyl (4-methylphenyl)

TPAP tetrapropylammonium perruthenate

Tr trityl (triphenylmethyl)
Ts tosyl (4-toluenesulfonyl)
TTBP 2,4,6-tri-*tert*-butylpyrimidine
UMP/UDP/UTP uridine 5'-mono/di/triphosphate

Contents

Preface and Acknowledgements Abbreviations	xvii xix
CHAPTER 1: The 'Nuts and Bolts' of Carbohydrates	1
The Early Years	1
The Constitution of Glucose and Other Sugars	7
The Cyclic Forms of Sugars, and Mutarotation	15
The Shape (Conformation) of Cyclic Sugars, and the Anomeric Effect	23
References	32
CHAPTER 2: Synthesis and Protecting Groups	35
Esters	36
Acetates	36
Benzoates	38
Chloroacetates	39
Pivalates	39
Levulinates	39
Carbonates, borates, phosphates, sulfates and nitrates	40
Sulfonates	41
Ethers	42
Methyl ethers	42
Benzyl ethers	43
4-Methoxybenzyl ethers	44
Allyl ethers	45
Trityl ethers	45
Silyl ethers	45
Acetals	47
Cyclic acetals	49

viii Contents

Benzylidene acetals 4-Methoxybenzylidene acetals Isopropylidene acetals Diacetals Cyclohexylidene acetals Dithioacetals Thioacetals Stannylene acetals	50 53 54 57 58 58 58 59
The Protection of Amines	61
Orthogonality	66
References	67
CHAPTER 3: The Reactions of Monosaccharides	75
Oxidation	75
Reduction	80
Halogenation Non-anomeric halogenation Anomeric halogenation	84 85 89
Alkenes and Carbocycles Non-anomeric alkenes Anomeric alkenes Carbocycles	93 93 94 96
Anhydro Sugars Non-anomeric anhydro sugars Anomeric anhydro sugars	98 99 101
Deoxy, Amino Deoxy and Branched-chain Sugars Deoxy sugars Amino deoxy sugars Branched-chain sugars	105 105 107 111
Miscellaneous Reactions Wittig reaction Thiazole-based homologation Mitsunobu reaction Orthoesters	112 112 113 114 115

ix	
	ix

Industrially Important Ketoses	117
D-Fructose	117
L-Sorbose	119
Isomaltulose	119
Lactulose	120
Aza and Imino Sugars	121
References	124
CHAPTER 4: Formation of the Glycosidic Linkage	133
General	135
The different glycosidic linkages	135
The mechanism of glycosidation	136
Ion pairs and the solvent	136
The substituent at C2	137
The 'armed/disarmed' concept	137
The 'torsional control' concept	138
The 'latent/active' concept	139
Activation of the glycosyl acceptor	139
The concept of 'orthogonality'	140
'Reciprocal donor/acceptor selectivity'	140
Hemiacetals	141
Glycosyl Esters	144
Glycosyl Halides and Orthoesters	145
The Koenigs–Knorr reaction (1,2-trans)	146
The orthoester procedure (1,2-trans)	148
Halide catalysis (1,2-cis)	150
Glycosyl fluorides (1,2-cis and 1,2-trans)	152
Glycosyl Imidates (1,2-cis and 1,2-trans)	153
Thioglycosides (1,2-cis and 1,2-trans)	156
Seleno- and Telluroglycosides	160
Glycosyl Sulfoxides (sulfinyl glycosides; 1,2-cis and 1,2-trans)	162
Glycals	164
4-Pentenyl Activation (1,2-cis and 1,2-trans)	166

x Contents

β-D-Mannopyranosides (1,2-cis) Glycosyl halides Glycosyl sulfoxides (and thioglycosides) β-D-Glucopyranoside to β-D-mannopyranoside Intramolecular aglycon delivery Other methods	169 169 170 171 172 173
β-Rhamnopyranosides (1,2-cis)	174
2-Acetamido-2-deoxy Glycosides	174
2-Deoxy Glycosides	178
Sialosides	180
Furanosides	181
Miscellaneous Methods Alkenyl glycosides Remote activation	182 182 183
C-Glycosides The addition of carbanions to anomeric electrophiles The addition of electrophiles to anomeric carbanions Glycosyl radicals Miscellaneous	186 187 188 190 191
References	191
CHAPTER 5: Oligosaccharide Synthesis	203
Strategies in Oligosaccharide Synthesis Linear syntheses Convergent syntheses Two-directional syntheses 'One-pot' syntheses	203 204 206 206 207
Polymer-supported Synthesis Types of polymers Linkers Attachment of the sugar to the linker/polymer The glycosyl donors used Insoluble <i>versus</i> soluble polymers Trichloroacetimidates Pentenyl glycosides	210 211 212 213 213 214 215

Glycosyl sulfoxides Thioglycosides Glycals Automated oligosaccharide synthesis Combinatorial synthesis and the generation of 'libraries'	215 216 216 217 217
References	219
CHAPTER 6: Monosaccharide Metabolism	225
The Role of Charged Intermediates in Basic Metabolism	225
Glucose-6-phosphate: a Central Molecule in Carbohydrate Metabolism	226
Glycolysis	227
The Fate of Pyruvate in Primary Metabolism Under aerobic conditions Under anaerobic conditions	230 230 230
Gluconeogenesis	231
The Pentose Phosphate Pathway	232
The Glyoxylate Cycle	234
Biosynthesis of Sugar Nucleoside Diphosphates Nucleotidylyltransferases Biosynthesis of UDP-glucose, UDP-galactose and galactose Biosynthesis of UDP-glucuronic acid and UDP-xylose Biosynthesis of GDP-mannose Biosynthesis of UDP-N-acetylglucosamine and	235 235 236 238 239
UDP-N-acetylgalactosamine Biosynthesis of UDP-N-acetylmuramic acid Biosynthesis of GDP-fucose Biosynthesis of furanosyl nucleoside diphosphates:	240 242 242
UDP-galactofuranose and UDP-arabinofuranose	243
Biosynthesis of Sialic Acids and CMP-Sialic Acids	244
Biosynthesis of <i>myo</i> -Inositol	246
Biosynthesis of L-Ascorbic Acid	247
References	249

CHAPTER 7:	Enzymatic Cleavage of Glycosides: Mechanism, Inhibition and Synthetic Applications	253
Glycoside	Hydrolases	253
Sequen Mecha	and Inverting Mechanisms nce-based classification of glycoside hydrolases nism of inverting glycoside hydrolases	255 255 256
ca	nism of retaining glycoside hydrolases that use arboxylic acids as nucleophiles nism of retaining glycoside hydrolases that use tyrosine	256
as	nism of retaining grycoside hydrolases that use tyrosine is a catalytic nucleophile nism of retaining glycoside hydrolases that use	258
su	ıbstrate-assisted catalysis	258
Unusual l	Enzymes that Catalyse Glycoside Cleavage	259
Transglyo	cosidases	262
Structure	-based Studies of Glycoside Hydrolases	263
Reagents	and Tools for the Study of Glycoside Hydrolases	265
Non-cova	alent Glycoside Hydrolase Inhibitors	268
Therm	ion of Glycoside Hydrolases in Synthesis addynamic control (reversed hydrolysis) c control (transglycosidation)	272273273
Glycosyr	nthases: Mutant Glycosidases for Glycoside Synthesis	276
Thioglyc	oligases: Mutant Glycosidases for Thioglycoside Synthesis	278
Hehre Re	esynthesis/Hydrolysis Mechanism	279
Referenc	es	280
CHAPTER 8:	Glycosyltransferases	285
200,000,000,000,000,000,000,000	ation and Mechanism fication anism	285 286 286
	Itransferases and the 'One-enzyme One-linkage' pothesis	291
Sequenc	e-based Classification and Structure	292
Reversib	oility of Glycosyl Transfer by Glycosyltransferases	293

Inhibitors of Glycosyltransferases	294
'Direct' inhibition of glycosyltransferases	294
Therapeutically-useful glycosyltransferase inhibitors	299
'Indirect' inhibition of glycosyltransferases by metabolic interference	301
Chemical Modification of Glycoconjugates Using Metabolic	
Pathway Promiscuity	303
Use of Glycosyltransferases in Synthesis Enzymatic synthesis using glycosyltransferases and sugar	305
(di)phosphonucleoside donors	306
Multienzyme systems including sugar (di)phosphonucleoside generation and recycling Synthesis using glycosyltransferases in engineered whole cell	311
systems	314
References	316
CHAPTER 9: Disaccharides, Oligosaccharides and Polysaccharides	321
Cellulose and Cellobiose	321
Starch, Amylopectin, Amylose and Maltose	324
Glycogen	326
Cyclodextrins	327
Sucrose, Sucrose Analogues and Sucrose Oligosaccharides	328
Lactose and Milk Oligosaccharides	331
Fructans	333
Chitin and Chitosan	334
Trehalose and Trehalose Oligosaccharides	335
1,3-β-Glucans	337
Mannans	338
References	339
CHAPTER 10: Modifications of Glycans and Glycoconjugates	343
Epimerization	344
Sulfation	345