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Preface

It was in the summer of 1977 that it first occurred to me that there was no
single text where one could obtain a balanced view of all the mathematical
consequences that have flowed from the Stone Representation Theorem,
and that it would be useful to have such a book. At that time, however, I
did relatively little to pursue this idea; the only thing that I wrote down
was a tentative list of chapter headings, which bore relatively little resem-
blance to the book which eventually emerged. I made a more serious
start in the autumn of 1978, when I gave a Part III (graduate) course in
Cambridge entitled ‘Stone Spaces’; this covered most of the material in
chapters I-1V (and would have covered more, but for lack of time). I had
the opportunity to recycle a good deal of the material from chapters 11
and III in January 1979, as part of a course on ‘Internal and External
Locales’ which I was invited to give at the Université Catholique de
Louvain in Belgium; but that course went on to consider topos-theoretic
applications of locales (written up in [Johnstone 1979]) which were never
intended to forra part of this book.

The text of the first three chapters (except for section 111 4) was written
up in the summer of 1979; in the autumn which followed, I gave a con-
tinuation of the ‘Stone Spaces’ course (to a subset of the original audience)
which covered most of the material in chapters VI and VII. The writing
of the remainder of the text was largely done in the two succeeding
summers: chapter IV and sections III 4 and V 1 in 1980, and the rest in
1981. After the text was completed, but before the typesetting began, I
had the opportunity to polish up one or two points as a result of a further
course of lectures during my sabbatical at McGill University, Montreal,
in the winter of 1982.
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viii Preface

In writing a book of this kind, one inevitably accumulates more debts
of gratitude than can be repaid in a short Preface. My first debt is to the
audiences of the lecture-courses mentioned above: particularly to my
colleague Martin Hyland and my student Andrew Pitts, whose unfailing
enthusiasm for the project did a lot to keep me going; to Francis Borceux,
who was responsible for inviting me to Louvain-la-Neuve; and to Michael
Barr and Marta Bunge, who invited me to Montreal. Out of the many
people who have contributed to my own education in the subjects covered
in this book, it would be entirely invidious to select only three; but I shall
do this by naming Bernhard Banaschewski, John Isbell and André Joyal.
The influence of the first two can be gauged by the frequency with which
their names appear in the Notes at the ends of chapters, and by the length
of their entries in the Bibliography; Joyal's contribution cannot be
similarly measured by what he himself has written, but his influence on
my thinking about locales is nonetheless profound (see [Johnstone 1983]).

Preliminary copies of the typescript were circulated to a number of
colleagues (including Michael Fourman, Rudolf Hoffmann, Dana Scott,
Harold Simmons and Myles Tierney), several of whom offered valuable
comments and suggestions for improvement; in this context I must
particularly thank Saunders Mac Lane for his expert advice on historical
matters. (However, neither he nor any of the others mentioned should be
held responsible for any errors which remain; they are mine alone.)
Finally, and by no means least, I have to record that my life has been
enriched, since I began working on this project, by getting to know
Marshall Stone personally. His courteous hospitality, and his keen interest
in the present-day descendants of his fundamental theorems of the 1930s,
have meant a great deal to me.

It remains only for me to thank David Tranah and his colleagues at
Cambridge University Press for their efficiency in the production of the
book, for their willing acceptance of all my unreasonable demands in
matters of style, and for their meticulousness in keeping me in touch with
all stages of the production process — despite the best efforts of the
Canadian Post Office to frustrate them during my stay in Montreal.

Cambridge, July 1982 P.T.J.



Advice to the reader

Like a great many research-level books in mathematics, this one is an
uneasy compromise between a textbook for the student and a reference
work for the specialist. The specialist will presumably need no help in
finding what he wants from the book (assuming it's here at all); so these
remarks are primarily addressed to the student, or to the lecturer who
might be considering using the book as the basis for a graduate course.

First, prerequisites: the reader is presumed to know about as much
algebra and general topology as he might have been expected to pick up
in a British undergraduate course. In particular, he is presumed (in
chapters IV and V, at least) to have some familiarity with commutative
rings; but on the other hand, the treatment of lattices is entirely self-
contained. (However, the book should not be regarded as a textbook on
lattice theory — it misses out far too many important concepts, in particular
that of modularity.) The treatment of categories (which are used freely
throughout the book) is not self-contained:; a student who has not met
categories before will have to do some background reading to flesh out
the bare bones in section 1 3. Nevertheless, it would be possible for a
course based on the book to proceed simultaneously with a first course in
category theory; I should hope that the two would reinforce each othertoa
large extent. Similar remarks apply to sheaf theory, which is used only
in chapter V; the first section of this chapter is not a self-contained intro-
duction to sheaves, but in conjunction with a first course in sheaf theory
it should be sufficient to unlock the rest of the chapter.

The numbering system used is rather old-fashioned: each chapter is
divided into four sections (a sheer coincidence), and each section is divided
into a number (between 5 and 17, but usually around 10) of *paragraphs’,
each of which can be regarded as the working-out of a particular idea.
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X Adbvice to the reader

The theorems, lemmas, corollaries, etc. are not numbered; but since every
paragraph contains at most one of each, they can be referred to by their
paragraph numbers. Thus ‘Theorem I1I 2.4’ means the unique theorem in
paragraph 4 of section 2 of chapter III. (For references within a given
chapter, the chapter number is omitted.)

To try to cope with the conflicting demands of student and specialist,
I have labelled certain paragraphs as ‘secondary’, particularly in the first
three chapters. These contain material which is included either for the
sake of completeness or because it is going to be needed in a later chapter,
but which may be omitted at a first reading without damaging the con-
tinuity of the narrative. They are distinguished by being marked with an
obelus (1), and printed in slightly smaller type. In the last four chapters,
there are a number of paragraphs of primary material which depend on
secondary paragraphs in the first three chapters; obviously, when one
encounters one of these, the remedy is to go back and read the material
which was omitted earlier. (For example, on reaching paragraph 1V 2.4
it will be necessary for anyone who has previously omitted paragraphs
II 3.5-3.7 to go back and read them.) There is only one comparable
instance within the first three chapters, where Lemma 11 2.8 is used in the
proof of Corollary III 1.3; unfortunately it proved impossible to rearrange
the material to avoid this, but the earlier lemma can easily be read out
of context.

The exercises are scattered throughout the text, instead of being segre-
gated at the ends of chapters. This is because they are really an integral
part of the text, and should be regarded as compulsory for all readers - the
result of an exercise is frequently used in a proofin the very next paragraph.
For this reason, hints are given for the solution of all but the most routine
ones.

Because of the diverse nature of the material covered, the logical depen-
dence relation between the chapters is much more fragmentary than is
usually the case. The ‘compulsory core’ of the book consists of the Intro-
duction and the first two chapters, which are prerequisites for all that
follow; thereafter, chapter I11 is a prerequisite for chapters IV and VII, but
that is about all. (There are quite a number of cross-connections between
chapters IV and V, and a lesser number between chapters VI and VII; but
in each case it would be possible to read the later chapter without having
read the earlier one.)

The Bibliography is quite extensive, but even so it does not claim to be a
comprehensive listing of all the papers relevant to topics covered in the
book. References to the Bibliography are by the name(s) of the author(s)
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and date of publication, enclosed in square brackets: except that when
the author’s name occurs naturally in the sentence where the reference is
made, only the date is given in brackets. Where the Bibliography lists
more than one publication by a given author in a given year, suffix letters
are used to distinguish the second and subsequent ones. As far as possible,
the dates given are those of first publication (except where specific refer-
ence is made to a second or later edition); but details of second editions,
translations, etc. are given in the Bibliography itself where appropriate.
The year 1984 is used as a conjectural publication date for forthcoming
papers about which no more precise information is known.

This final paragraph is addressed primarily to logicians. There is little
that is overtly logical in this book, except in chapter V where a certain
amount of first-order logic is inescapable. This doesn’t imply that I am
uninterested in logic; on the contrary, I regard it as one of the most impor-
tant features of the theory of locales that it enables one to give construc-
tively valid proofs of many results whose counterparts in point-set
topology are essentially non-constructive. However, I don’t see the need
to clutter up a book about mathematics with a lot of references to the
logical framework within which one is doing the mathematics: if an
argument is constructively valid (and where possible, my arguments
usually are constructively valid), a professional logician will not need to
be told this, whereas the sort of hard-nosed ‘working mathematician’
who regards logic like a disease will not thank you for telling him anyway.
(I hope that he might, however, notice the fact that a constructively valid
proof of a given theorem is generally more elegant than one which relies
heavily on the law of excluded middle; constructivity is almost as much a
matter of style as of logic.) On the other hand, I have not been able to
prevent a certain obsession with the axiom of choice from breaking
through, particularly in the Notes on the first four chapters. Within the
main text of the book, those theorems, lemmas, etc. whose proofs require
(some form of) the axiom of choice are distinguished by being marked
with an asterisk; I hope that this will not prove distracting to those who
don’t want to be bothered with such things.



Introduction
Stone’s Theorem in historical perspective

This book is about a particular theorem - the Stone Representation
Theorem for Boolean algebras — and some of the mathematical conse-
quences which have developed from it in the last 45 years. Inevitably, the
author of a book which sets out to chart the development of a mathe-
matical idea in this way is faced with the necessity of compromising
between two approaches: the historical, in which one attempts to follow
each strand of the development in more or less chronological order (but
perhaps misses some of the interconnections between the various strands),
and the logical or ‘genetic’ [Mac Lane 1980], in which one uses hindsight
to take the most economical and painless route to the main results (but
thereby loses some insight into why these results ever came to be seen as
important).

The particular compromise which I have adopted is to go fairly whole-
heartedly for a logical approach in the text itself (the route by which we
shall eventually arrive at the proof of Stone’s Theorem in section 11 4 will
strike historically-minded readers as perverse, to say the least), but to
begin the book with an Introduction which attempts, first to set the
Representation Theorem in the historical context in which Stone proved
it, and then to indicate what those subsequent developments were, which
led to the point at which the line of exposition I have adopted can be
seen to be (as 1 believe it to be, anyway) an efficient and unifying way of
covering a certain rather diverse body of mathematical knowledge. (To
reinforce the message of this Introduction, there are also sections of
historical and bibliographic notes at the end of each chapter.)

Our historical survey begins with the birth of abstract algebra, which
has recently been documented by Saunders Mac Lane in an admirable
essay [1981]. Mac Lane traces the first clear instance of an abstract/
axiomatic approach to algebra to a paper of Cayley [1854] on group
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Introduction Xiii

theory. However, group theory was not in the forefront of the drive
towards abstraction in algebra which occurred in the early years of this
century; perhaps this was because Cayley’s representation theorem [1878],
by showing that every abstract group was abstractly isomorphic to a
‘concrete’ group of substitutions (= permutations), removed the need for
any abstract development of group theory until a much later date.

If group theory is the oldest branch of abstract algebra, Boolean algebra
has a good claim to be the second. Of course, Boole [1847, 1854] and
Peirce [ 1880] were really only concerned with concrete algebras of prop-
ositions (or of classes), but Whitehead [1898] and Huntington [1904]
both took an abstract approach. However, there seems to have been little
interest in non-Boolean lattices before 1930 (apart from the remarkable
papers of Dedekind [1897, 1900]. which, however, were again concerned
with concrete lattices — in this case lattices of ideals), and little development
even of the Boolean theory beyond mere juggling with axioms.

Now although Cayley’s representation theorem may have delayed the
development of abstract group theory, it did at least stabilize the axioms
of the subject by demonstrating that they were indeed sufficient to capture
‘the algebra of substitutions’. In Boolean algebra, there was a clear need
for a similar representation theorem to show that the axioms had cap-
tured ‘the algebra of classes’; but it was not immediately forthcoming.

Of course, we should not expect such a theorem to say that every
Boolean algebra is isomorphic to the algebra of all subsets of some set;
for just as full permutation groups have certain group-theoretic properties
not shared by all groups (for example, if we exclude the group of order
two, the property of having trivial centre), so there are lattice-theoretic
properties enjoyed by full power-set algebras but not by all Boolean
algebras. Let us briefly consider two of these.

In the algebra of all subsets of a set we have, in addition to the binary
operations of union and intersection (which are represented by the lattice
operations v and A), the additional possibility of forming unions and
intersections of infinite families of subsets. We say that a lattice is complete
if it has infinitary operations V. A corresponding to these set-theoretic
ones; it is easy to give examples of Boolean algebras which are not com-
plete. Again, in the full power-set PX of a set X, the singleton subsets
{x}, x € X, play a special role: they are not equal to the least element £,
but there is nothing strictly between them and & - equivalently, {x} can-
not be represented as a union of strictly smaller subsets. An element of a
Boolean algebra with this property is called an atom; the abundance of
atoms in PX is expressed by the fact that, for every Y#, there exists
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an atom Z with Z<Y. A Boolean algebra with this property is called
atomic; again, it is easy to give examples of non-atomic Boolean algebras.

Now let B be an abstract Boolean algebra, and let X denote the set of
all atoms of B. We may define a map ¢:B—PX by setting ¢(b)=
{x € X|x<b}. It follows easily from the definition of an atom that an
atom x satisfies x<b v c if and only if either x<b or x<c; from this we
may deduce that ¢ is a homomorphism of Boolean algebras. Moreover,
¢ is one-to-one if B is atomic, since if b#c then the symmetric difference
b A ¢ lies above some atom, which will be in just one of ¢(b) and ¢(c);
and ¢ is surjective if B is complete, since then any subset Y of X is the
image under ¢ of its join in B. Thus we have proved

Theorem
A Boolean algebra is isomorphic to the algebra of all subsets of
some set if and only if it is complete and atomic.

This theorem was first proved by the logicians A. Lindenbaum and
A. Tarski (see [ Tarski 1935]), and it is clearly an important step towards
a general representation theorem. However, it still leaves us powerless
to deal with Boolean algebras which are not atomic; some new idea is
needed.

At this point there enters the figure of Marshall Stone. Significantly,
Stone was neither an algebraist nor a logician; his main work had been
in functional analysis, with the study of linear operators in Hilbert space
[1932]. It was his work in this area, on the spectral resolution theorem,
which led him to the consideration of algebras of commuting projections
in Hilbert space; it was known that these could be given the structure of
Boolean algebras, but they had no natural representations as algebras
of subsets. The representation theorem thus became a tool of practical
importance to Stone; at the same time, his background in functional
analysis gave him a greater familiarity with the new methods being
developed in general topology than was available to most algebraists.

(In [1938], Stone sums up his attitude: ‘A cardinal principle of modern
mathematical research may be stated as a maxim: “One must always
topologize”’. But some algebraists were slow to learn this maxim: in
1946 [Hochschild 1947], Garrett Birkhoff was content to define algebra
as ‘dealing only with operations involving a finite number of elements’;
and when challenged by Artin, Mac Lane and others on the importance
of topological methods, he replied ‘I don’t consider this algebra, but this
doesn’t mean that algebraists can’'t do it Incidentally, Birkhoff had
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independently arrived at a representation theorem for distributive lattices
[1933] which was equivalent to Stone’s; but because he missed the
topological significance of the theorem, his version had far less influence
on the later development of the subject.)

Stone’s work on Boolean algebras was published in two long papers
in the Transactions of the American Mathematical Society [1936, 1937],
though summaries of some of his results had appeared earlier [1934,
1935]. There were two key ideas in Stone’s work: one was his realization
(described vividly by Mac Lane [1981]) that a Boolean algebra is the
same thing as a particular sort of ring (namely, one in which every element
a satisfies a2 = a). Nowadays, when the equivalence of Boolean rings and
Boolean algebras is something that we set as an exercise to undergraduates
in their first course on ring theory, it is hard to understand how this fact
remained undiscovered for so long. (Actually, Stone’s first work in 1932-3
was based entirely on an informal analogy with ring theory, and it was not
until 1935 that he realized the connection could be made formal; this
necessitated the rewriting of a large part of his work on the subject, which
explains the delay in publication of his results.) At any rate, the analogy
with rings led Stone to a realization of the importance of ideals (and
particularly prime ideals) in lattice theory; it is the set of prime ideals of a
Boolean algebra which provides the carrier set for Stone’s representation.
(Notice the contrast with the Lindenbaum-Tarski representation, in
which the carrier set is composed of elements of the Boolean algebra.)

Stone’s second key idea was the introduction of topology. He observed
that the set of prime ideals of a Boolean algebra can be made into a
topological space in a natural way, in which the open sets correspond to
arbitrary ideals of the algebra. (Specifically, to an ideal I we associate
the open set of all prime ideals which do not contain 1.) In this topology,
the clopen sets (those which are both open and closed) correspond to
principal ideals, and hence to elements of the algebra; so we can recover
(an isomorphic copy of) the original algebra from its space of prime ideals.

Now this was a really bold idea. Although the practitioners of abstract
general topology (notably the Polish school of Sierpinski [1928],
Kuratowski [ 1933], et al.) had by the early thirties developed considerable
expertise in the construction of spaces with particular properties, the
motivation of the subject was still geometrical — the study of subsets of
Euclidean space, and spaces constructed therefrom — and (so far as 1
know) nobody had previously had the idea of applying these techniques
to the study of spaces constructed from purely algebraic data such as a
Boolean algebra.
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However, Stone went ahead and did just that. Of course, given any
topological space X, the clopen subsets of X are closed under finite
union, intersection and complementation, and so form a sub-Boolean-
algebra of PX. But Stone showed that the spaces which arise as the prime
ideal spaces of their Boolean algebras of clopen subsets can be character-
ized in purely topological terms, as being compact, Hausdorff and totally
disconnected. (He called such spaces ‘Boolean spaces’; subsequent authors
have chosen to honour him by christening them ‘Stone spaces’.)

Moreover, any homomorphism of Boolean algebras gives rise to a
continuous map in the opposite direction between their prime ideal
spaces; and any continuous map of Stone spaces gives rise to a homo-
morphism in the opposite direction between their clopen-set algebras.
The constructions ‘prime ideal space’ and ‘clopen-set algebra’ are thus
examples of (contravariant) functors; and together they form one of the
earliest nontrivial examples of an equivalence of categories. All this was
proved in detail by Stone, although the categorical language in which we
now express it was not introduced until the following decade; but Stone’s
Theorem was undoubtedly one of the major influences which prepared
the mathematical world for the introduction of categories by Eilenberg
and Mac Lane [1942, 1945]. At any rate, the meaning of the equivalence
was clear: it meant that any algebraic fact about Boolean algebras could
be translated into a topological fact about Stone spaces, and vice versa.
The way was thus immediately open for developing applications of
Stone’s Theorem in both algebra and topology.

In fact the first applications were in topology and functional analysis.
Two of them were already present in Stone’s [ 1937] paper: his construction
of the maximal compactification of a completely regular space, and his
generalization of the Weierstrass approximation theorem. The Stone-
Cech compactification was of course discovered independently (see
[Stone 1962]) by Stone and by Cech [1937], but the methods of the two
were substantially different. Cech’s work can be seen as a natural extension
of the work of Urysohn [1925a] and Tychonoff [1929] on embedding
spaces in products; in fact his construction was a relatively simple develop-
ment of that used by Tychonoff in his proof that completely regular
spaces are precisely the subspaces of compact Hausdorff spaces. In con-
trast, Stone’s construction used algebraic properties of the ring C*(X) of
bounded continuous real-valued functions on the space X. This in turn
raised the problem of characterizing C*(X) in algebraic terms — a problem
which was again solved independently by two people, Stone [1940, 1941]
working with real-valued functions, and Gelfand [1939, 1941] with com-
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plex ones, thus laying the foundations of the important subject of Gelfand
duality. (See also [Kakutani 1940, 1941], [Krein and Krein 1940, 1943],
[Kaplansky 1947, 1948a], [Milgram 1949], [Anderson and Blair 1959},
[Gillman and Jerison 1960], [Henriksen, Isbell and Johnson 1961},
[Mulvey 1978a, 1979a], etc.)

Stone’s [1937] construction of his compactification also contained a
detailed proof of its universal property — once again, as noted by Mac Lane
[1970]. anticipating an important trend in category theory. It can thus be
considered as a first step in the ‘algebraization’ of the category of compact
Hausdorfl spaces, a process brought to a successful conclusion by Manes’
[1969] proof (which relied heavily on Stone’s compactification) that this
category is indeed algebraic in the technical sense. (See also [Edgar 1973],
[Semadeni 1974], and [Manes 1980].)

Another direction of application was initiated by Stone in [1937a];
in considering the topological equivalent of the condition of completeness
for Boolean algebras, he introduced the important notion of extremal
disconnectedness. Further work on extremally disconnected spaces [Stone
1949] confirmed their importance in functional analysis. and led up to
the work of Gleason [1958], Rainwater [1959]. Iliadis [1963],
Banaschewski [1967. 1971] and Dyckhoff [1972, 1976] on projective
topological spaces — once again, importing ideas from algebra (in this
case. homological algebra) into categories of topological spaces. More
recently, Johnstone [1979b, 1980a, 1981] has pointed out the sheaf-
theoretic and logical ideas underlying this connection.

In yet another paper published in 1937 [1937b]. Stone generalized his
representation theorem to non-Boolean distributive lattices, at the same
time introducing the non-Hausdorfl cousins of Stone spaces which we
now call coherent spaces. Although these have received less subsequent
attention than Stone spaces, the work of Hochster [1969]. Priestley
[1970, 1972] and Joyal [1971. 1971a] is worth mentioning. In another
direction. [Stone 1937b] paved the way for the study of topological
concepts from a lattice-theoretic viewpoint, initiated by Wallman [1938]
and pursued by McKinsey and Tarski [1944]. Nobeling [1954]. Lesieur
[1954], Ehresmann [1957]. Papert [1964], Dowker and Papert [1966],
Isbell [1972] and Simmons [1978]. among others. (A close relative of this
line of development is the study of topological posets and lattices: [ Frink
19427, [Nachbin 1950]. [Ward 1954]. [Anderson 1959, 1961, 1962],
[Strauss 1968], [Choe 1969]. [Lawson 1969. 1970, 1973], [Scott 1972],
[Hofmann and Stralka 1976], [Semilattices 1980]. etc.)

In recent years, the lattice-theoretic approach to topology has merged
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in the study of general sheaf theory and topos theory. The origins of sheaf
theory [Leray 1945, 1946], [Cartan 1949] owe little if anything to the
work of Stone; but the generalized sheaf theory pioneered by Grothen-
dieck and his followers around 1963 [Giraud 1963], [ Verdier 1964], and
still more the elementary theory of toposes introduced by Lawvere and
Tierney in 1970 [Lawvere 1971], [Tierney 1973], have increasingly
focused attention on the fact that the important aspect of a space (from a
sheaf-theoretic point of view) is not its set of points but its lattice of open
subsets. (This is not the place for a detailed history of sheaf theory or
topos theory; we refer the reader to [Gray 1979] and the Introduction to
[Johnstone 1977].)

Another area where the influence of Stone’s work has been strongly
felt is the representation theory of rings and more general algebraic
systems. The foundation-stone of this theory is Birkhofl’s subdirect de-
composition theorem [1944], which displays none of the influence of
Stone’s topological ideas, but it was soon realized [Jacobson 1945],
[Arens and Kaplansky 1948] that much sharper representation theorems
could be obtained by introducing topologies in the fashion of Stone’s
Theorem. Further important work in this direction was done by Gillman
[1957], Henriksen and Jerison [1965a], Pierce [1967], Dauns and
Hofmann [1968], Keimel [1971], Hofmann [1972], Davey [1973] and
Cornish [1977]; in recent years this line, too, has developed strong links
with topos theory [Mulvey 1974, 1979], [ Kennison 1976], [ Tierney 1976],
[Johnstone 1977a], [Coste 1979].

It remains to consider two areas of mathematics in which, like the
dog in the night-time [ Doyle 1892], the influence of Stone’s Theorem is
more conspicuous by its absence than by its presence. One of these is
category theory itself. Mac Lane [1970] has pointed out how the categ-
orical ideas present in Stone’s [1937] paper were not directly followed
up by the founders of category theory: in particular, the notion of adjoint
furctor, though present implicitly in Stone’s description of his com-
pactification, and strongly suggested by the functional-analytic notion of
adjoint operator, was not explicitly introduced into category theory until
1958 [Kan 1958]. Stone himself [1970] has analysed the reasons for this
failure, pointing out that the algebraic and algebraic-topological back-
ground of the pioneers of category theory naturally meant that the proto-
categorical ideas arising from general topology and functional analysis
did not form a part of their experience.

(However, it should not be thought that Stone’s work has had no
influence on category theory. There is one area in particular — the categ-
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orical study of duality theorems — which, whilst it also owes a good deal
to the duality theory of Pontryagin [1934] and van Kampen [1935],
draws a very large part of its inspiration from the duality theorems of
Stone and Gelfand already mentioned. For work in this area, see
[Hofmann 1970], [Isbell 1972a, 1974], [Hofmann, Mislove and Stralka
1974], [Keimel and Werner 1974], [Lambek and Rattray 1978, 1979],
[Lawson 1979] and [Barr 1979].)

The other area where one searches in vain for the influence of Stone’s
Theorem is in algebraic geometry, with the rise of the ‘Zariski topology’.
It was sometime in the late forties (see [Zariski 1952]) that O. Zariski
realized how one might define a topology on any abstract algebraic
variety, by taking its algebraic subsets as closed sets; the precise date is
difficult to determine, since Zariski himself does not seem to have attached
much importance to the idea. (There is no mention of the Zariski topology
in the first edition of Weil's book [ 1946] on algebraic geometry, although
it plays a central role in the second edition [1962].) It was not until the
work of Serre [1955] that the Zariski topology became an important tool
in the application of topological methods (in this case, sheaf cohomology)
to abstract algebraic geometry. There is an obvious similarity between the
topologies introduced by Zariski and Stone, and indeed Dieudonné [1974]
asserts that Zariski was influenced by Stone’s work; but there seems to be
no acknowledgement of this influence in Zariski’s own papers.

The refoundation of algebraic geometry using schemes in place of
varieties, begun by Grothendieck [1959, 1960] in the late fifties, brought
the Zariski and Stone topologies even closer together: indeed, the latter
is just the special case of the former applied to the spectrum of a Boolean
ring. But again, one will not find any reference to Stone in the work of
Grothendieck, even though his use of the word ‘spectrum’ is an obvious
echo of [Stone 1940], and Grothendieck, with his background in func-
tional analysis, must have been familiar with Stone’s work in that field.
Again, when the Zariski topology made its first appearance in a book on
commutative algebra, as opposed to algebraic geometry, [Bourbaki
1961a], there was no mention of Stone’s name. (The Zariski topology does
not occur in [Zariski and Samuel 1958].)

One area which has not been mentioned in this survey is mathematical
logic. This is not because Stone’s work has failed to have an influence
here, but because until recently (if one discounts such papers as [£o0§ and
Ryll-Nardzewski 1954]) the full extent of that influence has rarely been
made explicit. It is only since the rise of elementary topos theory, and the
consequent interest in coherent logic ([Reyes 1974], [Makkai and Reyes



