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Preface
to the Fifth Edition

The presentation of a new edition of Professor Rainville’s book gives
testimony to the effect of the simple and direct style that has made earlier
editions most popular with students of differential equations. The present
author hasattempted to maintain that simplicity of style while making several
modest changes and one major addition. The chapter on systems of equations
has been greatly expanded to include the use of matrix techniques in solving
systems of linear equations with constant coefficients.

As in all of the previous editions, an attempt has been made to main-
tain a balance between developing techniques for solving equations and
the theory necessary to support those techniques. Both technique and
theory are illustrated in numerous appllcatlons interspersed throughout
the book.

The material is arranged to permit great flexibility in the choice of topics
for a semester course. Except for Chapters 1, 2, 5, 16 through 18, and
either 6 and 7 or 10 and 11, any chapter on ordinary differential equations
can be omitted without interfering with the study of later chapters. Parts
of chapters can be omitted in many instances.



vi Preface to the Fifth Edition

For a course that aims at reaching power series as rapidly as is consistent
with some treatment of more elementary methods a reasonable syllabus
should include Chapters 1 and 2, Chapters 5, 6, 7, 8, parts of Chapters 13
and 15, Chapters 17 and 18, and whatever applications the instructor cares
to insert.

This book has sufficient material for a full year course, if the individual
topics are taken up with the attention to detail that such a course suggests.

Chapters 1 through 16 of this book appear separately as A4 Short Course
in Differential Equations, Fifth Edition. The shorter version is intended for
courses that do not include discussion of infinite series methods.

The author wishes to express his appreciation for the many suggestions
made by colleagues at Franklin and Marshall College and by students and
instructors at other colleges and universities. He is pleased to acknowledge
in particular the thoughtful assistance he received from Professor Richard
Howland of Rhode Island College.

P.E. B.

Lancaster, Pennsylvania
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1

Definitions, Elimination of
Arbitrary Constants

1. Examples of differential equations °

In physics, engineering, and chemistry and, on occasion, in such subjects
as biology, physiology, and economics it is necessary to build a mathematical
model to represen certain problemis. It is often the case that these mathemati-
cal models involve the search for an unknown function that satisfies an
equation in which derivatives of the unknown function ‘play an important
role. Such equations are called differential equations. As in equation (3)
below, 4 derivative may be involved implicitly through the presence of

- differentials. Our aim is to find methods for solving differential equations;
that is, to find the unknown function or functions that satisfy the differential

equation.
The following are exaniples of differential equations:
d
gy( = cos X, (1)
d?y
—= +k¥y=0 2
o y =0, (2
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(x? +.y¥)dx — 2xydy =0, ° 3)
LZTZi + R% + éi = Ew cos wt, (5)
ZZT‘: + ‘3;712/ =0, 6)
(%)3 - xyZ—: + wv= 0, (7
:—;c+x‘%—4xy=0, (8?.
5% ¥ 7(%)3 —8y=0, )

g .Y (10
.'x%+yg—£.= nf. ) (11)

When an equation involves one or more derivatives with respect to a
* particular variable, that variable is called an independent variable. A variable
is called dependent if a derivative of that variable occurs.

In the equation
i di 1, '
L +.RE + 5i = Ewcos ot (5)

i is the dependent variable, ¢t the independent variable, and L, R, C, E, and
w are called parameters. The equation

v o*v
4+ =0
ax t ay? ©)
has one dependent variable V and two independent variables.
Since the equation ,
(x* +.y})dx — 2xydy = 0 3)

may be written

dy
2 2_2 i
x‘+y xydx
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or
(x* + yz)d—x — 2xy =0,
dy

we may consider either variable to be dependent, the other being the inde-
pendent one.

Orval Exercise

Identify the independent variables, the dependent variables, and the parameters in
the equations given as examples in this section.

2. Definitions

The order of a differential equation is the order of the highest-ordered
derivative appearing in the equation. For instance,

d?y (dy

3

24 2|2| +y=0 (1)

dx

is an equation of “order two.” It is also referred to as a ‘“‘second-order
equation.”
More generally, the equation

FOx,y,¥,...,y" =0 )

is called an “nth-order” ordinary differential equation. Under suitable
restrictions on the function F, equation (2) can be solved explicitly for y™ in
terms of the other n + 1 variables x, y, ', . .., y® =1 to obtain

Y= SOy Ve, YY), ) 3
For the purposes of this book we shall assume that this is always possible.
Otherwise, an equation of the form of equation (2) may actually represent
more than one equation of the form of equation (3).
For example, the equation
x(y) +4y —6x2=0

actually represents the two different equations,

y,_—2+./4'+6x-" o y,_—z— 4+ 6x°
X X ’

A function ¢, defined on an intervala < x < b, is called a solution of the
differential equation (3), providing the n derivatives of the function exist on
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the interval a < x < b and
"(x) = f(x, $(x), (%), ..., ¢~ V(x)),
foreveryxiha <x<b
For example, let us verify that
y=e
is a solution of the equation
| dy  dy

E+E—6y=0. (4)

We substitute our tentative solution into the left member of equation (4)
and find that

d? dy
‘Z+——6y—4ez"+2e2"—6ez"50,
dx
which completes the desired verification.
All of the equations we shall consider in Chapter 2 are of order one, and
hence may be written

dy
a—f(x,y)

For such equations it is sometimes convenient to use the definitions of ele-
mentary calculus to ‘write the equation in the form

M(x,y)dx + N(x,y)dy = 0. (5)

A very important concept is that of the linearity or nonlinearity of a
differential equation. An equation -

s F(x, y,vy’,f..,y"") =0
is called linear if the function F is a linear function of the variables Vo Vseeos Y™
Thus, the general linear equation‘of order n may be written

d’l
b0 T2 + BT + oo+ b+ by = R®. (@

ax"~ ‘
For example, equation (1) above is nonlinear, and equation (4) is linear. The
equation ,

x2y" + xy + (x2 — n?)y = 4x3
is also linear. The manner in which the independent variable enters the
equation has nothing to do with the property of linearity.
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Oral Exercises

For each of the following, state whether the equation is ordinary or pamal linear
or nonlinear, and give its order.

d?x 3 Pw 0w
l.d2+kx—-0 2.67—05.;7.
3. (x? + y?)dx + 2xydy = 0. 4. y' + P(x)y = Q(x).
S. y" =3y +2y=0. 6. yy' = x.

ou  *u  *u d‘y
7.3?-%‘3—}}24‘5—0. = w(x).

d’y  d*x ‘ di .
9.xgt—5—yw—cl. lo.L‘Tt-f-Rl—E. '
11, (x + y)dx + (3x2 — 1)dy =0. 12. x(P + () -y =

_ d.V__ 2
13.( ) :i; +yw—0. 14'6—1 xy +.y*.
15. y" + 2y’ — 8y = x? + cos x. 16. ada + bdb = 0. -

3. The elimination of arbitrary constants

In practice, differential equations arise in many ways, some of which we
shall encounter later. There is one way of arriving at a differential equation,
however, that is useful in that it gives us a feeling for the kinds of solutions to
be expected. In this section we shall start with a relation involving arbitrary
constants and, by elimination of those arbitrary constants, come to a differ-
ential equation consistent with the original relation. In a sense we start with
the answer and find the problem. ;

Methods for the elimination of arbitrary constants vary with the way in
which the constants enter the given relation. A method that is efficient for
one problem may be poor for another. One fact persists throughout. Because
each differentiation yields a new relation, the number of derivatives that need
be used is the same as the number of arbitrary constants to be eliminated.
We shall in each case determine the diﬂ'erenti,al equation that is’

(a) Of order equal to the number of arbltrary constants in the given
relation.

(b) Consistent with that relation.

(c) Free from arbitrary constants.



