Modeling Software **Edited by Jean-Michel Tanguy** ## Environmental Hydraulics *volume 5* ### **Modeling Software** Jean-Michel Tanguy First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Adapted and updated from *Traité d'hydraulique environnementale 9* published 2010 in France by Hermes Science/Lavoisier © LAVOISIER 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George's Road London SW19 4EU UK John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.iste.co.uk www.wiley.com © ISTE Ltd 2010 The rights of Jean-Michel Tanguy to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. #### Library of Congress Cataloging-in-Publication Data Traité d'hydraulique environnementale. English. Environmental hydraulics / edited by Jean-Michel Tanguy. v. cm. Includes index. Contents: v. 1. Physical processes and measurement devices -- v. 2. Mathematical models -- v. 3. Numerical methods -- v. 4. Practical applications in engineering -- v. 5. Modeling software. ISBN 978-1-84821-152-0 (set) -- ISBN 978-1-84821-153-7 (v. 1) -- ISBN 978-1-84821-154-4 (v. 2) -- ISBN 978-1-84821-155-1 (v. 3) -- ISBN 978-1-84821-156-8 (v. 4) -- ISBN 978-1-84821-157-5 (v. 5) 1. Environmental hydraulics. I. Tanguy, Jean-Michel, 1951- II. Title. TC163.5.T6913 2010 627--dc22 2010019879 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-152-0 (Set of 5 volumes) ISBN 978-1-84821-157-5 (Volume 5) Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. #### Introduction This fifth volume of the environmental hydraulics series completes the series. Volume 1 described hydrological and fluvial processes; while Volume 2 covered estuarine and littoral processes. Volume 2 also described the mathematical modeling of these processes, emphasizing the consistency between models. Volume 3 lists and describes the numerical methods used to solve systems of partial differential equations in hydrological contexts. Following these physical and theoretical considerations, Volume 4 describes a wide range of real-world studies carried out using commercial computer models. This final volume thus develops the theme of the earlier installments, discussing a range of commercial modeling tools that can be used to treat examples such as those described earlier in the series. In order to remain faithful to the theme of the series we will start with hydrological modeling tools and go on to discuss tools treating maritime morphodynamics. This volume is divided into three main sections: 3D models, which represent the most recent advances in numerical modeling, and which are currently beginning to emerge onto the commercial stage, 2D models which are seeing more and more widespread use in engineering applications, and 1D models which remain the most widely used tools for engineers. It is worth recalling a brief history of the evolution of spatial discretization within modeling tools, as shown in Figure i.1. Introduction written by Jean-Michel TANGUY. The first models appeared in the 1960s in the field of meteorology, a field with strong scientific and strategic interest. Over the next decade the first computer models emerged to replace manual calculations. These were largely developed by consultant engineers. These models mostly consisted of Fortran calculation loops solving the 1D Saint-Venant model, based on extremely simplified geometries such as trapezoidally structured river models. Figure i.1. Developments in discretization of models over recent decades (showing mesh cell size in meters) The field was still being pioneered, and there were as many models as there were research centers. Pre- and post-processing was extremely primitive: the alphanumeric consoles of the time did not have graphical capabilities. These first computer codes were nevertheless the state of the art for their creators. Originating in the USA, the first codes developed with federal funding started to be distributed for free (e.g. the HEC-RAS¹ family). This was the catalyst for the commercialization of simulation codes, followed by the appearance of the first graphical pre- and post-processors. The invention of inkjet printers then made it possible for engineers to produce graphical representations of their simulation results. ¹ HEC: Hydraulic Engineering Center - River Analysis System: US Corps of Engineers. This paved the way for subsequent innovation. Two main directions were taken by the specialists within the field: - the first retained a 1D approach, but complemented hydraulic models with models describing associated processes such as inert substances transport, sediment transport and bed evolution. In terms of couplings between processes, the challenges lie in the reconciliation of time scales which may be extremely different, in the quantification of coupling terms that are not easy to estimate, and in the couplings themselves. For example, suspended sediment transport takes place on much smaller time scales than the hydrodynamics, which may in some cases be considered to be steady state in comparison; - the second focused on extending the models to more dimensions: this resulted in the appearance of 2D and subsequently 3D models. Research into numerical methods led to higher performance algorithms: for example determination of the free surface using a 1D model is much easier than determining the same free surface in two dimensions. It is worth noting that these two approaches were taken by different communities: the first approach was mostly taken by physicists, while the second was more the domain of applied mathematicians. We will see later on, however, that these two communities are now converging on a common goal: families of coupled 3D codes. Figure i.1 also shows that the discretization of models, as represented by the mesh density, has become much finer over the decades: for meteorology there has been an improvement by a factor of 100, and for hydraulics a factor of 1,000. In hydraulics, and for related disciplines such as transport and wave mechanics, there has been an expansion from 1D models to 3D models. As for wave mechanics, which demand an extremely fine mesh that is a function of the wavelength, 3D nonlinear models are now available. This development has of course been made possible by advances in the capabilities of computers, but has also been driven forwards by research into modeling techniques. The diagram implies that a factor of 10 gain should be expected for most types of models over the next decade. #### Data availability Models must be fed with data, and this should be available at suitable intervals and be of a suitable quality and spatial density to suit the modeling tools to be used. Thus 1D models, which use transverse cross-sections of the river, do not require a xviii high degree of precision, whereas a 2D model requires a higher accuracy of spatial data, sampled at a higher density, particularly over the flood plain. Thus the more dimensions to the model, the more expensive it will be to fund, and the greater the need for large quantities of accurate data that is complex to use. Such a model will be more complex to implement and use. On the other hand it will be much more accurate, and will make it possible to treat more local phenomena. The situation is yet more complex with real-time models. In addition to the implementation data described earlier, these must be fed with measurements collected in real-time, which must be integrated using assimilation procedures – a process described in the chapters discussing real-time models. #### Model coupling The final stage involves coupling of 1D, 2D and 3D models using a "toolbox" approach. This makes it possible to rationalize the performance of these tools. It is possible to work on the propagation of a flash flood along hundreds of kilometers of a river, based on boundary conditions recorded at limnimetric or tidal stations, and then use 2D models to simulate the distribution of water heights around the confluence of two rivers, in order to analyze the effects of the flood on the vulnerability of a specific area. The same is true in maritime environments: 2D models can be used on large scales, and the details of longshore currents can be described using 3D models, which is crucial in the determination of deposition and erosion regions around coastal engineering structures. #### Research directions A range of areas are the subject of research interest at present. Here we will restrict ourselves to general considerations, referring the reader to earlier volumes for further information on areas of current research. We will however mention a number of points that we feel are important: - the quantification of physical processes is very dependent on the metrology used (radar, satellite, non-intrusive systems). Certain processes may appear very simple, but be challenging to quantify: an example in hydrology is the fact that there is still not a clear understanding of how rainfall water accumulates, infiltrates and enters water courses. A homogeneous film of water is not a concept that exists in nature. Other processes are by nature highly complex to study and quantify, as is the case in fluvial morphodynamics where there is no clear understanding of how to model helicoïdal currents and their effects on the deformation of meanders; - improvements in numerical methods, which enable more precise and more reliable calculations to be carried out and results to be obtained more rapidly; - the question of uncertainties is also a key area of current research. It is important when results are presented from a model that they are accompanied by an indication of the associated uncertainties. These may have a number of different origins: measurements, models, etc.; - the appearance of new, very promising types of models which by nature have the potential to herald a departure from earlier generations of models. There is another area which is often overlooked, which is rather more technical than scientific: this is the question of the user interface. So much time has been lost in implementing such models: for example the data conditioning, development of boundary conditions, introduction of manmade structures with appropriate behavior, and inclusion of local topographical detail, but also processing of the results and presentation of the results in an appropriate form along with an indication of their associated uncertainties. New platforms are appearing which can be used to optimize the conditioning and production of results, but more work is still required. Indeed, if we consider the advancements in science and technology it may seem astonishing that engineering models are still so awkward to use! It seems reasonable to ask why, given all the technologies currently available, no model is available that allows the user to see everything at any point in time, and to interact fully with the model. For example, in flood wave propagation, it is of primary importance to determine settled areas that are susceptible to flooding. In the majority of cases, a number of complementary actions are possible to reduce the impact of the hazard. This requires the simulation of a range of different scenarios in parallel in order to determine the best way to protect these at-risk areas: modifying a structure to simulate the breaching of levées or opening a dam sluice to divert part of the flood, and immediately analyze the consequences on the lowering of the level in urban areas. All this is performed in real time, incorporating many different types of ground-truth data. Such features are crucial to those entrusted with making the decisions. It is possible to go further still, and introduce knowledge into the models that may enable the tools themselves to recommend certain courses of action and analyze their consequences. All this is currently feasible; we have the technical abilities to develop tools of this nature. #### xx Environmental Hydraulics 5 Unfortunately, the scientific community is mired in the challenge of optimizing numerical methods, and is not investing enough effort in the ergonomics of simulation tools. The question may also be asked as to whether it is import useful to gain 1 mm of accuracy in the results from the model, or to continue to use less refined models but to devote a great deal more effort on data assimilation. Evidently there are not enough economic incentives in the risk analysis or engineering to justify such considerations. Even present-day models are heavily encumbered: they currently take far too much time to set in motion and often must be launched "manually". How is it possible that we still rely on a workflow as archaic as pre-processing/ computation/ post-processing? Nowadays fully object-oriented languages² make it possible to interact in real time with the simulation procedures, but the previous generation of models has not yet incorporated these innovative approaches that transfer significant responsibility to the modeler. By putting the user in the driving seat, the software enables the modeler to respond to events occurring on the ground by adjusting water management installations, constructing barriers or demolishing obstacles. The lack of a more intuitive approach is a real shame, because NTMs nowadays have extremely high precision, thanks to the easy-to-use IGN Geoportal and Google Earth and the availability of extremely high quality databases such as NTMs based on aerial laser-based measurements. Finally, while Météo-France is able to simulate the weather over the entire planet, in other fields, we are barely able to describe the development of flash flood waves within a river catchment area. This rather blunt observation constitutes a call to arms for the pooling of resources between cognitive scientists, ergonomics experts, artificial intelligence experts, software engineers specializing in graphical visualization, physicists and applied mathematicians with the aim of defining the tools of the future for the real-time simulation of physical phenomena. #### Structure of Volume 5 Volume 5 consists of three parts, each consisting of a number of chapters grouped together, based on the number of dimensions of the computer codes they discuss. We start with 3D models (Part 1) and then step down to 2D (Part 2) and finish with 1D (Part 3). Each chapter not only presents the simulation modules but also discusses the pre- and post-processing, along with example applications illustrating the abilities of the tool. #### Part 1: 3D models In Chapter 1, we begin by describing a non-linear wave propagation code: REFLUX3D. This is a highly sophisticated tool for wave simulation. Its complexity is a direct result of the effect it models, which are extremely difficult to model in the vicinity of the coast, near complicated coastal structures and underwater man-made structures. Near these underwater structures, the wave behavior may be altered dramatically, and this requires specific treatment within the model. Next, in Chapter 2, the TELEMAC 3D family of codes is discussed. In addition to a hydrodynamics module, this incorporates other modules handling effects such as the transport of dilute suspended tracers, bed loading transport and bed evolution, and transport of cohesive sediments in suspension. Chapter 3 makes a foray into the world of meteorology, presenting the range of codes used operationally by Météo-France: a hierarchy of models dedicated to atmospherical modeling (ARPEGE) feeding into models covering more restricted areas (ALADIN) and ones treating yet smaller regions (AROME), with resolutions close to a kilometer and giving a very detailed description of the processes that take place on these scales. Chapter 4 demonstrates the crucial role of 3D hydrogeological tools such as MARTHE in modeling flows within soils. The sub-soil water currents that transport pollutants traverse layers with a wide range of different characteristics, and the pollutants respond very differently depending on whether these are saturated or unsaturated regions. #### Part 2: 2D models Chapter 5 concerns the SIM model. This is a hydrometeorological tool used to estimate surface runoff as a function of position over a mesh with 8 km long sides. This toolchain couples atmospheric forcing with water cycle and energy cycle models, along with a hydrological model that can be used to determine the discharges within water courses. Within the field of hydrology, new models such as MARINE, which is showcased in Chapter 6, are taking the form of integrated platforms that mix preprocessing, calculation and post-processing, and modeling hydrological and xxii hydraulic processes. Calculations are based on kinematic wave modules for hydrology and models of river hydraulics. This tool is currently being adapted to real-time operation. Chapter 7 presents another hydrological platform, ATHIS, which incorporates several different types of hydrological and hydraulic modules. It also operates as an integrated platform, which is also in the course of being adapted for real-time use for rapid-response forecasting of flash flooding within river catchment areas. Chapter 8 descibes LARSIM, which is a conceptual type of flood forecasting system able to reproduce flood discharges through a continuous simulation of the water cycle. It is used in flood forecasting. Still within the domain of hydrology, the TOPMODEL code discussed in Chapter 9 is an example of an original approach in that it combines a Hortonian infiltration approach with an approach based on contributions from different areas of surface water, two current complementary explanations for the generation of surface runoff. In Chapter 10, we return to the TELEMAC2D family of flow models, which consists of a range of models analogous to the 3D family of the same name. Thanks to the use of 2D models such as RUBAR 20TS, described in Chapter 11, the processes of suspended sediment transport and river bed evolution can now be modeled. RUBAR is a code which couples a Saint-Venant type of flow model with a suspended sediment transport model. Chapter 12 focuses on NAVMER. This is a ship course simulator that uses a 2D flow code to determine the current fields and a trajectory model that uses this information and the characteristics of the vessel to determine its course. This code is also used to determine the implications for ship maneuverability of man-made structures or sections of watercourses with complex current patterns. #### Part 3: 1D models Chapter 13 describes VAG, a very simple wave propagation code that is not only widely used in simple configurations, but is also used for the determination of boundary conditions to the sea for more complex models. The SOPHIE real-time hydrological platform, discussed in Chapter 14, is a modular application able to host a range of different types of flood prediction models. It is used operationally in the flood prediction network within France. Chapter 15 is dedicated to a comparison of two 1D hydraulic flow codes: MASCARET and RUBAR3. Chapter 16 discusses the generic characteristics of "cell based" 1D flow models. Chapter 17 focuses on CANOE, a multi-use tool for urban hydrology. Built on a detailed description of both the sewerage network and the roadways, it determines the distribution of flows over the course of a hydrometerorological event. The Prose 1D model, studied in Chapter 18, simulates the impact on a hydrographical network of pollution from diffuse rather than point sources. Chapter 19 gives a generic presentation of substance transport models. Chapter 20 makes a comparison between two morphodynamic simulation codes, RUBARBE and TSAR, which simulate the interactions between hydraulics, sediment transport and bed evolution. Chapter 21 describes the PAMHIR hydraulic modeling environment for the design and use of 1D numerical models for river hydraulics. #### **Table of Contents** | Introduction | XV | |--------------------------------------------------|----| | PART 1.3D MODELS | 1 | | Chapter 1. Non-Linear Waves With REFLUX 3D | 3 | | 1.1. Context | 3 | | 1.1.1. System of equations to be solved | 4 | | 1.1.2. h-s method | 5 | | 1.1.3. Linear dispersion | 7 | | 1.1.4. Vertical profiles | 9 | | 1.1.5. Linear shoaling | 10 | | 1.1.6. Non-linear analysis | 12 | | 1.2. Data required for implementation | 13 | | 1.3. Specific numerical methods | 14 | | 1.3.1. Variational formulation | 14 | | 1.3.2. Lax-Wendroff scheme | 14 | | 1.3.3. TVD scheme with slope limiter | 16 | | 1.4. Modeling options | 17 | | 1.4.1. Wave breaking | 17 | | 1.4.2. Treatment of the moving boundary | 18 | | 1.4.3. Treatment of an open boundary | 19 | | 1.4.4. Generation of the incident wave | 20 | | 1.5. Results output by the code, and operation | 21 | | 1.5.1. Distortion of a wave by a trapezoidal bar | 21 | | 1.5.2. Breaking | 22 | | 1.5.3. Migration of an undersea sandbar | 23 | | 1.6. Examples of models | 25 | | 1.7. Bibliography | 25 | #### vi Environmental Hydraulics 5 | Chapter 2. Current Modeling with TELEMAC3D | 29 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------| | 2.1. TELEMAC3D: 3D hydrodynamics at a free surface | 29
30
31
31
32
32
34 | | Chapter 3. Atmospheric Modeling | 32 | | 3.1. The rise of modeling as a tool in meteorology | 35
36 | | model | 40
41
43 | | Chapter 4. Groundwater Flow Modeling in Porous Media Using MARTHE Dominique THIÉRY | 45 | | 4.1. Application area 4.2. References 4.3. Technical features 4.3.1. Classic hydrodynamics 4.3.2. Hydrodispersive transport 4.3.3. Unsaturated zone, density, temperature 4.3.4. Automatic initialization, optimization 4.3.5. Specialized uses 4.3.6. Gridding 4.3.7. Flow calculation 4.3.8. Transport calculation 4.3.9. Geochemical interactions 4.4. Structure of the code 4.5. WinMarthe preprocessor 4.5.1. Preparation and visualization of data 4.5.2. Plan view and vertical cross-sections using the WinMarthe preprocessor | 45
46
47
47
47
48
48
49
49
51
51 | | 4.5.3. WinMarthe preprocessor: exporting to MAPINFO | 53
54 | | Table of Contents | vii | |-------------------|------| | THOIR OF COMME | 2.00 | | 4.5.5. Modeling using an irregular mesh and an | | |--|-----------| | embedded sub-mesh | 54 | | 4.6. Simulation of the migration of a pollution plume | 54 | | 4.6.1. Infiltration of a pollutant across the unsaturated zone and | | | subsequent migration within the water table | 54 | | 4.7. Complex hydrogeological configurations | 56 | | 4.7.1. Density effects – coupled hydraulic and thermal simulation | 57 | | 4.8. Biphasic simulation of saline intrusion | 59 | | 4.9. Infiltration of imiscible TCE (tetracholoethylene) into | | | heterogenous sand initially saturated with water | 60 | | 4.10. Biphasic simulation of water injected at four points into | | | an aquifier initially saturated with oil | 60 | | 4.11. Biphasic simulation of methane storage in an aquifer | 60 | | | | | PART 2. 2D MODELS | 63 | | Chapter 5. Meteorology and Hydrology | 65 | | Florence HABETS | | | 5.1 Dibliance by | 60 | | 5.1. Bibliography | 69 | | Chapter 6. Hydrological Modeling with MARINE | 71 | | Marie-Madeleine MAUBOURGUET | | | 6.1. General description of MARINE | 71 | | 6.1.1. Pre-processing | 72 | | 6.1.2. Runoff calculation | 72 | | 6.1.3. Transport of water from the river to its outflow | 72 | | 6.2. Description of pre-processing | 72 | | 6.2.1. Required data | 72 | | 6.2.2. Determination of slopes and their directions | 73 | | 6.2.3. Handling of accumulation | 73 | | 6.2.4. Changing the resolution of the DEM | 73 | | 6.3. Description of the hydrological module | 73 | | 6.3.1. Production function | 73 | | 6.3.2. Transfer function for runoff water from grid sites to the river | 13 | | or to drains | 75 | | 6.3.3. Transfer function for water into drains | | | 6.3.4. Transfer function for subsurface water | 76 | | | 77 | | 6.4. Description of river transport | 78 | | 6.5. Application examples | 78 | | 6.5.1. Data | 79 | | 6.5.2. Pre-processed data | 79 | | 6.5.3. Flood hydrographs at the outlet (Anduze) | 80 | | 6.6. Bibliography | 80 | | Chapter 7. Distributed Hydrological Modeling – the ATHYS Platform 8 | |--| | Platform | | Noël Cres, François Desclaux and Arthur Marchandise | | 7.1. General description of ATHYS 7.2. Pre-processing phase 7.2.1. Input data 7.2.2. Data pre-processing 7.3. Description hydrological models 7.4. Description of post-processing 7.5. Applications 7.5.1. Example 1: impact of spatial distribution of rainfall on flood surge calculations 7.5.2. Example 2: impact of spatial soil variation on flood calculations 7.5.3. Example 3: impact of flood control dams on flood simulations 7.5.4. Example 4: flood modeling in streets of urban areas | | 7.6. Conclusions and future directions | | 7.7. Bibliography | | Chapter 8. Operational Applications of the LARSIM Model for Flood Forecasting | | 8.1. The problem 10 8.2. Structure of the LARSIM model 10 8.3. Operational mode – summary 10 8.4. Quality control and validation of input data 10 8.5. Spatial interpolation of rainfall data 10 8.6. Launching a forecasting simulation 10 8.7. Analysis of results, and experiments performed by the flood prediction services 10 8.8. Bibliography 10 | | Chapter 9. Real-Time Runoff – Infiltration Models: TOPMODEL 109 Georges-Marie SAULNIER | | 9.1. Introduction1099.2. TOPMODEL philosophy1169.3. Advantages of TOPMODEL1179.4. Forcing and predicted variables in TOPMODEL1179.5. Analytical basis1169.6. Bibliography117 |