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To John Thompson on the occasion of his 70th birthday



Preface

During the Academic Year 2002-2003, a number of events took place on both sides
of the Atlantic to celebrate the 70th Birthday of our illustrious colleague and friend
Professor John G. Thompson. A conference was held in Cambridge, England, in
Thompson’s honor. A special issue of the Journal of Algebra was edited to mark the
occasion.

Here in Gainesville, the occasion was marked by the University of Florida mainly
with two events. The Thompson Assistant Professorship was launched, and the whole
Academic Year 2002—-2003 was a Special Year in Algebra. One of the highlights of the
Special Year in Algebra was the conference Finite Groups 2003 of which the present
volume is the Proceedings.

We are grateful to the Mathematics Department, the College of Liberal Arts and
Sciences, and the Office of Research and Graduate Programs at the University of
Florida, as well as the National Science Foundation, and the National Security Agency
for their support of the Special Year in Algebra in general, and the conference Finite
Groups 2003 in particular.

Finite Groups 2003 took place in Gainesville from March 6, 2003 to March 12,
2003. As befits a conference in honor of John Thompson, talks on many different
topics were given. A list of speakers and their topics is included below. Many of the
speakers emphasized the relationship of their work to the work of John Thompson.
At the conference banquet, Professor Broué presented John Thompson with a copy of
the special issue of the Journal of Algebra edited in honor of his 70th Birthday.

The present Proceedings is a collection of articles in honor of John Thompson.
They do not represent a record of the talks as given, but, instead, they are articles pre-
pared specifically for these Proceedings. Each article has undergone a strict refereeing
process, and we are sorry that, because of the scope and the size of the proceedings,
not all interesting articles submitted could be accepted. Most of the articles here
present original research results with their proofs. A few are survey articles written
by leading researchers. It was the intention of all participants at the conference to
honor John Thompson. We hope these Proceedings do honor him, for we, as indeed
all group theorists do, owe him a great debt of gratitude for helping make our subject
as interesting as it is today.

Gainesville, August 2004 C.Y. Ho, P.Sin, P. H. Tiep and A. Turull
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On a question of Farjoun

Michael Aschbacher*

Let G be a group, H asubgroup of G, Hom(H, G) the set of all group homomorphisms
from H into G, and End(G) = Hom(G, G).

Following E. Farjoun, we say the embedding of H in G is closed if each member
of Hom(H, G) extends uniquely to a member of End(G).

Example 1. G is closed in itself for each group G.

Example 2. Let H and G be simple. Then H is closed in G iff Aut(G) is transitive
on subgroups of G isomorphic to H, AutauG)(H) = Aut(H), and Caw)(H) = 1.
In particular if G is the alternating group of degree n, and H is the stabilizer of a point,
then H is closed in G for eachn > 5 withn # 7.

As part of his investigation of idempotent augmented functors, Farjoun posed the
following question:

Question 1. If H is a finite closed nilpotent subgroup of a group G, is G = H?

For technical reasons it is sometimes easier to work with a slightly weaker condi-
tion. Define H to be nearly closed in G if each member of End(H) extends uniquely
to a member of End(G).

Question 2. If H is a finite nearly closed nilpotent subgroup of a group G,is G = H?

In this paper we introduce some machinery useful in investigating Question 2 and
present some partial results which show the Question has a positive answer in various
special cases. For example we reduce Question 2 to the case where H is a p-group for
some prime p, we show Question 2 has an affirmative answer when G is finite and the
nilpotence class of H is at most 3, and we show Question 2 has an affirmative answer
when G is finite for other interesting classes of p-groups. Here are some specifics:

Let C be a class of groups such thatif G € C and H < G then H € C. Define
a group P to be C-rigid or rigid with respect to C if whenever P is nearly closed in
G € C then P = G. Our first result says:

Theorem 1. Let C be a class of groups and Py and P, groups which are C-rigid.
Then Py x P is C-rigid.

*This work was partially supported by NSF-0203417.



2 Michael Aschbacher

As finite nilpotent groups are the direct product of their Sylow groups, Theorem 1
reduces Question 2 to the case where H is a p-group, so in the remainder of this
introduction assume G is a group, p is a prime, and P is a finite p-subgroup of G.
Moreover in the rest of the introduction we work in the class C of finite groups, so G
is assumed to be finite.

The next result shows Question 2 has a positive answer when P is large:

Theorem 2. If P is nearly closed in a finite group G and P € Syl (G) then G = P.

Theorem 3. If P is metabelian or of nilpotence class at most 3, then P is rigid with
respect to the class of finite groups.

A. Mann has a slick proof that groups of class 2 are rigid in the class of all groups;
indeed he shows that if P is closed in G then Z>(P) < Z>(G).

The method used to prove Theorem 3 can be used to treat other classes of p-groups,
but there are obstructions to a simple minded extension of the approach. See Section 9
for more discussion and a sketch of a proof that Question 2 has a positive answer for
groups P of class at most 5 generated by 3 elements of order p.

One tool for investigating Question 2 involves the relationship between “splittings”
of P and G, where a splitting of P is a decomposition of P as a split extension. In
Section 2 we consider a “splitting category” and define a class of “splitting solvable”
groups, which includes many interesting p-groups. Then we prove:

Theorem 4. If P is splitting solvable then P is rigid with respect to the class of finite
groups.

Finally the near closure property does not inherit to subgroups or homomorphic
images, so while the condition is very strong, it is not easy to exploit using traditional
techniques from finite group theory. On the other hand various properties following
from near closure do inherit. Thus in Section 10 we investigate classes of finite groups
satisfying such properties. We would like to show the subnormal closure of P in each
group G in the class is P-nilpotent (i.e. G = O,/ (G) P); such a result would give an
affirmative answer to Question 2 when G is solvable, and give very strong information
in the nonsolvable case. Unfortunately examples show this result is not true in general
for the classes we’ve considered, even when G is solvable. Nevertheless we include
an abbreviated discussion of this approach in one case, since that discussion does at
least lead to our final theorem, and since in addition the result may be true if other
properties are adjoined to obtain smaller classes.

Theorem 5. If p is an odd prime, G is a finite solvable group, and P is a p-subgroup
of G such that CG(P) = Z(G), then O, (G) is the largest p'-signalizer for P.

Recall a p’-signalizer for P is a P-invariant p’-subgroup of G.
The reader is directed to [2] for basic notation, terminology, and results involving
finite groups.



On a question of Farjoun 3

The author would like to thank Yoav Segev for drawing his attention to Farjoun’s
question, for many helpful conversations about the problem, and for suggesting im-
provements to the proofs of a number of lemmas in this paper.

1. Monoids and semigroups

We will be concerned with the monoid End(G) of a finite group G, so we begin with
some discussion of monoids.

In this section M is a finite semigroup; that is M is a set with an associative binary
operation - . Recall M is a monoid if M has an identity 1. If an identity exists, it is
unique. A zero for M is an element 0 € M such that foreachx € M,0-x =0 =x-0.
Again if M has a 0 then it is unique.

For X € M, write [X] for the subsemigroup of M generated by X. Thus [X]
consists of all products x;...x, with x; € X for all i. In particular for x € X,
[x]={x":0 <n eZ}.

An idempotent of M is an element x € M such that x? =x. Anelementy € M
is said to be split if y" = y for some n > 1.

1.1. Leta € M, k the least positive integer such that a* = a’ for some j > k, and g
the least positive integer such that a**t9 = a*. Set B = {a’ : j > k). Then:

(1) Bisacyclic subgroup of M of order q.
(2) B is the set of split elements in [a].

(3) Let sq be the first positive multiple of q such that k < sq. Then a*? is the
identity of B and B = (a'), for eacht > k with (¢,1) = 1.

Proof. As a* = a**4_ by induction on i, a**' = a***4 for each i > 0. Then by
induction on r:

(i) @™t = @™ foreachm > k and r > 0.
Hence:

(i)B={a’:jeJ),where J ={k+i:0<i<gq).

From (i) we see that ¢ := a"9 is the identity element of B, for each r such thatrq > k,
and hence, for each b € B, b? = e. It follows that for each b € B, b9~ is the
inverse of b and B is a group. If a/! = a/? for some j; < j, in J, then multiplying
by a“tD9=J1 we get that ¢ = a¥+D4 = g0+Da+2=J1 - Multiplying by a* we get
ak = gttt Da+n=it = gk+i2=i1 because a*+14 is the identity element of B. But
the equality a¥ = a*+/2=J1 contradicts the minimality of ¢, unless j; = j». It follows
that |B| = q. Letk <t € Z with (t,q) = 1,and set ¢ := a'. As (t,q) = 1:

(i) rJ =J mod ¢,
so B = [c] by (i)—(iii). This establishes (1) and (3).

Finally if a” is split then «” = a' for some t > r, so r > k by minimality of k.
Thus (2) holds. O
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Fora € M, let
sp(a) = {b € [a] : b is split}.
By 1.1, sp(a) is a group, so it has a unique identity id(a).
1.2. Leta e M.
(1) sp(a) is a cyclic subgroup of M.
(2) id(a) is the unique idempotent in [a].
Proof. Part (1) follows from 1.1. Let ¢ = id(a). Then e = esoeisan idempotent.

Conversely if f € [a] is an idempotent then f is split, so f € sp(a), and hence ¢ = f
as groups have a unique idempotent. O

Define an equivalence relation ~ on M by a ~ b if id(a) = id(b). Write a for the
equivalence class of a under ~, and set

sp(a) = {b : a ~ b and b is split}
1.3. sp(a) is a subgroup of M with identity id(a).
Proof. Lete = id(a)and H thesetof x € M suchthatxe = ex = xandyx = xy =e¢
for some y € M. It is easy to check that H is a subgroup of M. Then since M is

finite, e € [h] and h is split foreach h € H, so e = id(h) by 1.2.2. Thus H C sp(a),
and of course sp(a) € H, so the lemma holds. |

Define a relation < on M by
b<aifab=ba =b.

Forae MletM(<a)={be M :b <aj.
Write I for the set of idempotents in M.

1.4. (1) <isantisymmetric.
(2) < is transitive.
B)ac<aiffael.
(4) <isapartial order on I.
(5) If M has O or I then 0 <a < 1foralla e M.
(6) Foreacha € I, M(< a) is a subsemigroup of M with identity a.
(7) Ifa € T then M(< a) = aMa and sp(a) C M(< a).
(8) Ifa,b € I and b < a then sp(b) C M(< a).

Proof. If b <aanda < bthena = ab = b, so (1) holds. Let ¢ < b < a. Then

ac = a(bc) = (ab)c = be = ¢,



