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Foreword

Many subjects in schools and colleges now require a
knowledge of information technology (IT) — and the
trend is increasing. Above all, the student is expected
to develop and formulate his own algorithms for set
problems. This means that he has to represent a
problem with the help of data structures and con-
struct a set of instructions — the computer algorithm
— to arrive at a solution. The algorithm is then
converted into a program which is run on a computer
and returns an answer to the original problem.

The important thing here is for the student to
understand how to proceed from the problem to the
algorithm and from the algorithm to the final pro-
gram. The aim of this book is to shed light on these
processes and to provide the student with a useful aid
for program design. The book contains numerous
examples of practical problems from IT courses,
together with their corresponding algorithms and
programming  solutions  (written mostly in
PASCAL).

In writing this book, a team of experienced
computer scientists has produced descriptions, exam-
ples and illustrations of the main concepts of
computer science. The emphasis throughout has
been on providing definitions which are clear and
informative.

The book is directed primarily at secondary
school students, teachers and first year undergrad-
uates. Parents who are keen to help their children to
understand the basic concepts of computer science
and IT may also find the volume useful.

Although the entries are based on established
computer science textbooks and school syllabus
requirements, we have tried to anticipate the
demands which schools are likely to face in the
medium term with respect to IT and to take account
of current advances in the field.

Mannheim, Spring 1991
The editorial staff
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Authors’
note

Except where otherwise explicitly stated, the
standard conventions for denoting sets of numbers
are used in this volume. i.e.

R s the set of all real numbers;

VA is the set of all integers;

Q s the set of all rational numbers;
N is the set of all natural numbers;

The » symbol denotes a cross-reference to another
entry.
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ABORT

Unplanned termination of a program while it is being
executed. A program may be terminated by the user,
poperator, or the poperating system. An operating
system abort is usually the result of an $error in the
program, but it can be caused by a failure in the
computer system itself.

ABSTRACT AUTOMATON
A mathematical model of an pautomaton which is
represented in the most generalized way possible.
An abstract automaton A is a 7-tuple
A=(1,0,K,x,w,t,m) in which

I is a set of input values,

O is a set of output values,

K is a set of states,

«: I—K is the input function,

®: K—O is the output function,

1. K—K is the transition or change of state

function,

n: K—{0,1} is a predicate (the so-called halt

predicate).
All functions can be partially defined (#total func-
tion) (Fig. 1). The set E of final states is defined by

E={k € K|n(k)=1}.
The automaton works as follows. A value is input
into a state via . Then 1 is applied repeatedly until
the halt predicate is satisfied, i.e. a final state is
reached. The final state is converted into an output
value via ®. The run time ¢4 of an abstract automaton
A for an input i € [ is given by
ta(i)=min{m € N|n(t"(«(i)))=1}.

t4(i) is thus the number of changes of state which
must be made before the halt predicate is satisfied. t"
represents the mth application of t.

Fig. 1 — Model of an abstract automaton.

The function f,4, which is calculated by an abstract
automaton A is formally defined by ~

far 1> 0
) o(tD(a(i))), if t4(i) is defined
falh = undefined otherwise

An abstract automaton A is defined so generally that
it can calculate any desired function (even non-
computable functions (see #computable function)).

Example
Let f: N—N be any (total) function.

An abstract automaton A can be constructed
which computes f, i.e. for which f4=f is true. We
have only to use function f within the transition
function t and to define the input and output function
as the access to one of a state’s components. Let

A=(1,0,K,x,0,T,m)
where
I=0=N and K=N,xN,.
Let a: N—N;x N, be defined by
«(n)=(n,0) for all n € N.
o: NyxNy—N is defined by
®(0,n)=n foralln e N.
The halt or stop predicate
n: NyxXN—{0,1}
is represented by

1,if m=0
)= 0 otherwise

The transition function
T NoXN— Ny XN,
is defined by
©(n,0)=(0,f(n)).
The run time 14 of A is
t4(n)=min{m e N|n(t"(a(n)))=1)}

foralln e N.
The function f,4 which A computes is given by
fa(my=o(t'(«(n)))=0(t(n,0))
=o(0.f(n))=f(n)

foralln e N.
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For all n € N, f4(n)=f(n). Therefore A computes
the function f.

By defining 1,0 K.« .t and n, all other models
of automata can be derived from the abstract auto-
maton (which is why it is called abstract).

Example

We can derive a finite acceptor (#inite state automa-
ton) B =(X,Q.,5.¢,.F) from the abstract automaton
if we use the following definition:

.= X*
K:=Qx X"

l,ifge Fand w=¢
gw) = 0, otherwise.

a: X*— K with a(w) = (gy,w), and 1: K— K with
1(g.xw): = (8(g.x).w)forallx e X,we X*andqg e Q.

ACCUMULATOR

The accumulator is a pregister in the peentral process-
ing unit (CPU). It consists of a number of high speed
memories with very fast paccess times. Before an
artihmetic or logical poperation is carried out one of
the poperands is stored in the accumulator. Since the
accumulator is involved in each operation, it is not
necessary to specify it in the instruction (for a single
address machine, #instruction format). When the
instruction has been performed the accumulator con-
tains the result of the operation, which is available for
further processing. This is an advantage where a
series of operations produces intermediate results
which do not have to be stored in main memory.

ACKERMANN'S FUNCTION

Named after F. W. Ackermann (1896-1962), an
example of a #computable function which does not
exhibit #primitive recursion. Ackermann’s function

a: Ny x Ny— Ny

is recursively defined as follows:
m+1.iftn=0
an—1,1),ifm=0

a(n— 1.,a(n,m— 1)) otherwise.

a(n.m)=

Ackermann’s function grows very rapidly. An upper bound
cannot be sct by any primitive recursive function.

Examples
a(1,1)=3
a(2,2)=17
a(3,3)=61
a(4.,2) is a number with 19 729 digits

19 000
10

a(4.4) is greater than 10"

ACOUSTIC COUPLER

A device for transmitting data via the telephone
network (#data transmission). Using the same princi-
ple as a loudspeaker, an acoustic coupler converts
electronic signals from the computer into acoustic
wave forms for transmission down the telephone line.
To receive signals, a microphone in the coupler
converts incoming acoustic wave forms into digital
electronic pulses which can be passed to the
computer (see Fig. 1).

The telephone receiver is placed in a cradle in the
acoustic coupler. The system is simple to use and
provides a high degree of protection against noise
interference. The advantage of the acoustic coupler
over a modem is that no technical alterations are
required to the telephone receiver. Owing, however,
to the relatively poor transmission quality of the
telephone network, the #data transmission rate is
low. Data exchange (Datex) networks are more suit-
able for computer communications.

) Electronic Microphone
Station 1 signals /
3 * Acoustic | d
Computer coupler ]
" /
. Loudspeaker :
Station 2 P Telephone
< . Je—< j network
. Acoustic
Computer 1" coupler B
L

Fig. | — Data transmission using an acoustic coupler.
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ADA

Named after Augusta Ada Byron, Countess of Love-
lace (1815-1852), assistant to Charles Babbage,
ADA is an imperative $programming language
developed by the US Department of Defense. The
aim was to replace all programming languages hith-
erto used by the military with a single, uniform
language. ADA combines different concepts from
various programming languages. As a result, it is a
complex language and requires considerable outlay
to develop #compilers and programming environ-
ments. ADA adopted and extended the strict type
concept of the PASCAL programming language, in
which every data item is of a particular type (#data
type, ptyped programming language).

Data types: Like PASCAL, ADA has penumeration
types, #data types for #character, #boolean,
pinteger, #real (fixed or floating point represen-
tation depending on the accuracy required) and sub-
types (#subrange). ADA provides the following
pdata structures: Barrays, strings and #records
(including fixed and variant parts). Among other
things, Bconstants, types, Bvariables, #procedures
and functions can be declared.

Statements: Basic pstatements include Bassign (also
applies to whole arrays and records), procedure
#call, a return instruction for exiting from pro-
cedures and functions, $interrupt, $jump, and an exit
instruction for terminating Mloops. Compound state-
ments in ADA are #pblock, #if, #case, while, and
#loop, which can all be used in combination.
Packages: Modules, called packages in ADA, can
be defined for structuring. A module has two parts
(as in ™MODULA-2). The first part, the package
specification, contains externally visible constants,
variables, types, procedure and function headers and
type definitions (where the type name but not the
internal structure of the type is visible — so-called
private types). The second part, the package body,
contains the procedures and functions already speci-
fied and any additional declarations and statements.
These modules can be compiled separately and called
from other modules by means of the use statement.

Tasks: In ADA a module which can be executed in
#parallel (see #parallel processing) is called a task.
Apart from types, procedures and functions, a speci-
fication for a task may include so-called entry call
statements. Entry call statements are used to control
communication between different task specifica-
tions. They can be called from inside these in the
same way as procedures. accept statements specify
the actions which are to be carried out when an entry
call statement is reached. Exactly what happens
when a program arrives at an entry call or accept

statement depends on the state of the currently
running task. The possibilities are as follows:

(1) If a task arrives at an entry call before another
task reaches an accept statement for the same
entry call, then the task making the call inter-
rupts its processing.

(2) If a task arrives at an accept statement before
another task reaches an entry call for it, then the
latter task is interrupted.

(3) If one task arrives at an entry call and a second
task reaches an accept statement for this call,
then everything stops while the second task car-
ries out the actions specified by the accept state-
ment. Both tasks then resume processing. The
process by which different tasks communicate or
join their activities in this way is called a
rendezvous.

If several tasks reach entry calls or accept statements

and interrupt their processing, they are queued.
ADA contains various statements for controlling

interaction between tasks. The most important one is
the non-deterministic select statement (#determin-
ism). This allows execution of a task to be interrupted
or another task to be carried out until the appropriate
entry call point has been reached. Itis also possible to
limit the time a task is prepared to wait for an
acceptance or to specify alternative actions if the
called task cannot accept the call immediately.

Example

The following program listing shows a task specifica-
tion which manages a table of 100 entries in such a
way that various processes can access the table via
read and write calls.

type index is range 1.. 100;
task sharedtable is
- "element” is a global type
entry read (i: in index; w: out element);
entry write (i: in‘index; w: in element);
end sharedtable; ~ -
task body sharedtable

table: array (index) element;

begin
loop
select .
accept read (i: in index; w: out
- element) do
w:= table (i); -
end read;
or
~ accept write (i: in index; w: in element)

do
w:= table (i);
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end write;

end select;
endToop;
end sharedtable;

Generics: In ADA those parts of a program (i.e.
procedures, functions, packages and tasks) which
share broadly similar features can be declared as
generic. When the generic unit is initially declared,
such features are specified as parameters. Generic
units cannot be directly executed as such. At compile
time they must be copied (using the new statement),
at which point the actual or current values of the
parameters have to be declared. Types and functions
can be declared as parameters.

Example
We wish to write a general procedure for sorting an
array without reference to the array element type
(which may not be known). It is important only to
define an ordering relation for this type. In ADA this
can be expressed as follows:
generic (type elem)

function "< (x,y: elem) return elem)
procedure sort (field: in out array (integer range
<>) of elem) is begin

—Statement of sort procedure
end sort;
procedure intsort is new sort (integer,

- integer.”<"’);

Only in the last line does the new statement declare
an executable sort procedure for integers (the order-
ing relation is defined by integer.©*<’"). Sort pro-
cedures for other data types can now be generated in
the same way. The generic statement can also be
applied to packages and tasks.

Exceptions: A key feature of ADA is error handling.
Two approaches are possible. In the first method the
programmer may specify in each block the actions to
be performed in the event of a $run-time error. These
might include, for example, outputting a message to
the user and terminating the block normally or exit-
ing from the block after passing an error code to
either the parent block or the procedure which called
it. In the second approach, the programmer himself
defines possible errors or exceptional situations. The
raise statement generates such an error and passes
control to a handler.

Overloading: In many conventional programming
languages it is not possible to have identical identi-
fiers within the same block. However, under certain
conditions this is allowed in ADA and is called
overloading.

Example
We can define the following functions in a block,
where “index’ is a subtype of the class of integers:

function “+" (i,j: integer) return integer;
function “+" (i,j: index) return index;

The function symbol *‘+ " is overloaded here because
it can stand for two functions which are defined
differently. The problem of overloading identifiers
becomes clear when we consider the following
expression:

i+3

Which of the two above-defined functions is meant
here depends on the data type of the arguments. If
the variable i has been declared as an integer, the first
function is executed. If it is of type index, however,
then the second function is meant (assuming that the
constant 3 belongs to types integer and index). In
complex expressions it may be necessary to analyse
the expression in several passes until the declared
functions and variables can be assigned to all the
identifiers. This highlights the advantages and dis-
advantages of overloading. On the one hand, it
enables many problems to be formulated more
simply (e.g. a sort procedure can use the same identi-
fiers for both integers and text). On the other, the
complexity of assigning identifiers to declarations can
resultin the ADA compiler assigning functions which
the programmer never intended.

In ADA specifications for particular hardware
can be included. Thus the programmer can tell the
ADA compiler how to implement particular data
types (i.e. the number of bytes to reserve, etc.).
Furthermore he can define the hardware configu-
ration on which the program is to run and integrate
sections of machine code into an ADA program.

A complete ADA program consists of a number
of modules (packages and tasks), each of which can
be compiled separately. Altering and subsequently
compiling an individual module may require recom-
pilation of all the other modules which are dependent
on it. For this reason all ADA modules (source and
pobject programs) are managed in a single program
library.

ADA was developed with the object of replacing
a large number of different programming languages
by a single standard language. Combining numerous
different methods and approaches, it is an exceed-
ingly complicated language and its compilers are
large and very complex. Users of ADA and even
some programmers find it hard to grasp its #seman-
tics. For this reason some experts tend not to recom-
mend ADA, especially for applications where data
security is paramount.
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ADDER

An essential component of a #central processing unit
(CPU) which adds two or more poperands. Since all
four basic arithmetical operations can be reduced to
addition, the adder can also be used for subtraction,
multiplication and division. For implementations of
adders see #serial adder, $parallel adder, and $von
Neumann adder.

ADDRESS

A number or a character sequence used to identify a
storage location in a computer (#fmemory). A single
location or a set of locations may be addressed.
Addresses are integers, from 0 to 2"—1 for a number
n, where n is usually either 16 or 32. To access the
contents of a memory location, an paddress field in a
#machine language pinstruction specifies the address
of the location. An instruction usually contains one,
two or three addresses (referred to as a one, two or
three address system). The address format of an
instruction determines the number and meaning of
the addresses. The address range is the set of all
possible addresses and depends on the processor
type, memory size and poperating system.

If the computer is constructed in such a way that
the address of an object specified in the address field
differs from the actual physical address of the
memory location, then the operating system must
calculate the real value using additional information.
Typical paddressing methods requiring a calculation
of this kind are indirect, indexed, relative, symbolic
and virtual addressing.

ADDRESS FIELD

Part of an #instruction in ®$machine language or
#passembler which contains information about the
#addresses of poperands (Binstruction format). The
address field may contain several addresses.

ADDRESS FUNCTION

When it accesses the contents of locations in a
computer pmemory, a program often does not know
the absolute #$addresses as such. Instead, it uses
relative addressing (#relocatable program, paddress-
ing methods). The same principle applies to arrays.
To address an element of an Barray, the absolute
address in the memory must first be established via
the index values and the location of the whole array in
the memory. The address function then works out the
absolute address.

(1) A #machine program using relative addressing is
loaded into the computer’s work space (#loader).
It is loaded to a fixed address, called the load

(2)

3)

address or LA (#start address). Every relative
address (RA) which occurs in the program must
be converted into an absolute address (AA).
This is done according to the following formula
or address function:

AA :=LA+RA

In a virtual memory system (dmemory manage-
ment), the contents of areas of memory (called
pages) are removed while the program is being
executed. Later these may be reloaded to
another point in the memory if required. For
these purposes the program must be relocatable.
To access data in subsequently loaded pages, the
same address function is used asin (1), where LA
is the actual address at which a page is loaded.
Actual addresses also have to be calculated in
order to access the contents of pdata structures
(e.g. arrays or precords). What address function
is used depends on the type of data structure. If,
for example, an array is declared (#declaration)
as

var F: array [u, .. 04, Uz .. 0;] of integer;
then the actual address of an element F[i,j] in the
array is as follows (where a, is the absolute start
address of the array in memory and a data item of
type integer is assumed to occupy two storage
locations):

Address (Fli,j])=

a,+2-((02—uz+1)-(i—uy) +(—uz))
This address function assumes that the two-
dimensional array F'is accessed in memory a line
at a time. First of all the elements of the first line
are accessed (first index=u,), then the elements
of the second line (first index=u,+1), and so on.
We can specify a general formula for this. Let us
assume an n-dimensional array
var F: array [u; .. 04, U3 .. 02, ..., Uy .. O,] Of

type

whose elements are of data type type. Each
element occupies r memory locations and a, is
the absolute start address of the array F in
memory. The absolute address of the memory
location for the beginning of the element F[k, ,k,,
..., k,] is given by the address function f:

flkika, oy k) =ag+r D de (k= ),

i=1
where the so-called edge lengths d; are given by

di=[] (0;—u;+1)

j=i+1
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These are easily worked out in order:

d, —landdwl—d (o u+1)

for j=n,n—1,
The address function can be simplified somewhat
by taking all values which are independent of the
indices k and combining them into a so-called
“reduced start address“:

Areq = 2 d U;

i=1
This gives
flkys s k) =g+, dicky
i=1
In this form f is also referred to as the memory
image function.
For calculating the addresses of n-dimen-
sional arrays we use the following vector:
(arcd' n,r, dl’ dZ’ e st dn)'
To check for indexing errors (i.e. if k; should be
outside the range u, to 0;), all upper and lower
limits for u; and o, respectively should be stored
and checked against.

Example
We wish to access elements X[3,5] of the array X. X
has been declared as

array [1 .. .. 10] of real.
Letr=4and X be dsugned the relative start address
170. The load address (LA) is 1024. The following
table shows how things are organized in the
computer’s memory; on the left are the absolute
addresses of the elements in the array, on the right
the relative addresses.

1369 345

1368 344

1367 343 (X [4,10]
1366 342

1201 177

1200 176

1199 175 (X (111
1198 174

1197 173

1196 172

1195 171 (X [1,0]
1194 170

1026 2

1025 11

1024 0

Memory

The absolute start address a, of X is arrived at as
follows:

ay= 1024 + 170
=1194

The edge lengths are given by d,=1 and d, =11.
With the reduced start address
req =y — r-(dy-uy +dy-uy)
=1194 -4-(11-1+ 1-0)
=1150
we can calculate the absolute address of X[3,5]:
address(X[3,5]) = dyeq + r-(d,-3 + d,*5)
=1150+4-(33+5)
=1302

ADDRESS REGISTER

A #register which is reserved for holding an paddress.
An address register (e.g. the base register and the
index register) is required for certain $addressing
methods. The main memory of a computer also has
a special address register. Called a memory address
register, this is used to access a single memory
location during a cycle.

ADDRESSING METHODS

An addressing method specifies a way of establishing
a physical address. Many pmachine program instruc-
tions include an #address field. The address field
holds the paddress of a memory location which con-
tains the poperands or into which data values are
entered. The information contained in the address
field may not be identical to the physical address but
is used to calculate it during processing.

Figs 1-5 illustrate different addressing methods
using a memory store of seven memory locations,
addressed from 1 to 7.

In absolute (or direct) addressing the address
field directly specifies the actual address of the
operand.

Example
Load register with address 3 (Fig. 1).

1
Address field
2 5
3
4
. 5 1
Register
6 14
7 8
Fig. 1 — Absolute or direct addressing.



ADDRESSING METHODS

In indirect addressing the address field specifies an
address which in turn contains another address. This
second address is the memory location containing the
operand.

Example
Load register indirectly with address 2 (Fig. 2).

Memory

Address ﬁeldl 2 ] 1

C,

S W
—
o

Register 1

\I@[h

Fig. 2 — Indirect addressing.

In indexed addressing the address of the operand
is arrived at by adding the address specified in the
address field to the content of a special index register.

Example

An address register contains the address for memory
location 4. To this is added the content of the index
register (2). This allows the content of memory
location 6 to be accessed and loaded into the first
register (Fig. 3).

Memory

Index register | 2

Register 14

Fig. 3 — Indexed addressing.

Indexed addressing is particularly useful for
rapidly accessing consecutive memory locations.

In relative addressing a program determines the
address of each operand by adding the content of a

base register (the base address) to that of the address
field (referred to as the distance address, displace-
ment or offset). The principle is similar to indexed
addressing. The base address is usually deposited in
the base register at the start of the program or
subroutine. It is then automatically accessed for each
address calculation, without being explicitly men-
tioned in the program instruction.

Examples

(1) To load a register with the content of memory
location 5 (Fig. 4), the memory location con-
tained in the address field (3) is added to the
content of the base register (2).

Memory

Base register |
I 2 —l 2 5
3

Address field | 3

4
/L :
1 6

Register

Fig. 4 — Relative addressing.

(2) To load a register with the content of memory
location 7, the content of the base register,
address field and index register are added (Fig.

o) Memory

Base register I

2
Address field '_3-'_>
Register —
2
Index
register

Fig. 5— Relative addressing.

Relative addressing is important for Brelocatable
programs.

In symbolic addressing the programmer freely
assigns a name or label to a memory location. This is
usually a mnemonic (e.g. POC for Post Office Code).
The program #compiler substitutes absolute
addresses for the symbolic ones. Symbolic addressing
is used mainly in passembler programming.



AIKEN CODE

Example

The memory location whose address is 4 has the
symbolic label POC (Fig. 6). The assembler trans-
lates the instruction, *‘load register with the content
of POC” into “load register with the content of
memory location 4" (Fig. 7).

Register g
[(4300 Jee POCEa500:

Fig. 6 — Symbolic addressing.

Register
4300

44 4300

Fig. 7— Translation of a symbolic address into an absolute
address.

A virtual memory system (Pmemory manage-
ment) appears to the user as a single large address-
able area in pmain memory. In fact this (virtual) area
is much larger than the physical main memory of the
machine. Programs and data are accessed via a virtual
addressing system. The actual or physical addresses
which correspond to the virtual addresses are
assigned by the operating system, which loads data in
and out of an external memory store as it is needed.

In immediate addressing the address in the
address field is the operand itself (direct operand).
The memory itself is not accessed.

Example
Load register with address 4.

[+ ]+

Register

For addressing purposes, the term label may refer
to another point in the program, a component of the
computer or a peripheral device.

AIKEN CODE

The Aiken code is a tetradic code, i.e. made up of
four elements ($BCD code). A tetrad (#byte) is
assigned to each of the decimal numbers between 0
and 9 according to the following table.

Decimal  Binary Decimal  Binary
number code number code

0 0000 5 1011

1 0001 6 1100
2 0010 7 1101

3 0011 8 1110
4 0100 9 1111
Example

The decimal number 197 is represented as 0001 1111
1101 (four binary digits for each decimal number).

In the Aiken code the first position from the right has
the place value 1, the second 2, the third 4 and the
fourth 2. For this reason the Aiken code is also
referred to as 2—4-2-1 code.

Example

7=1101=1-2+1-44+0-2+1-1
Like #excess-3 code, Aiken code is a fcomplemen-
tary code.

ALGOL 60

An abbreviation for Algorithmic Language,
ALGOL 60 is an imperative #programming language
which was developed in the late 1950s and whose
#syntax was the first to be formally defined (in
#Backus—Naur form). ALGOL 60 was the first
programming language to support Bprocedures
(including recursion), #blocks and high level #control
structures. ALGOL 60 is the precursor of numerous
imperative languages such as PASCAL, $SIMULA
and PALGOL 68. It is influenced by $Lambda cal-
culus and passembler languages.

Every ALGOL 60 program is a block containing
#declarations and #instructions. Basic pdata types are
#boolean, pinteger, preal and #label. The only
#data structure allowed is the (multidimensional)
parray. Procedures and functions can be defined in
the declaration part of each block. It has basic
instructions for assigning values (Bassign), calling
procedures (#call) and jumping to other parts of the
program (#jump). Control statements are $if, a spe-
cial form of #case, blocks, while and count $loops.
Conditional statements can also be used inside ordin-
ary statements. Thus the statement




ALGOL 68

(1) a:=ifz<OthenOelse 1
is equivalent in ALGOL 60 to

ifz<Othena:=0Oelsea:=1
Similarly
(2) goto ifa=1then end

- else beginning

means the same as

ifa=1 then goto end else

goto beginning

Conditional statements can also be used in declara-
tions, e.g.

begin

real array m[if a =1 then — 10
else 10:100];

end

Depending on the value of a, we declare either an
array

real array m[ —10:100]
or an array

real array m[10:100]

Many ALGOL 60 structures have been adopted by
other programming languages, in either a similar or
an extended form. Languages which are fundamen-
tally similar to ALGOL 60 are hence referred to as
ALGOL-type languages. ALGOL 60 has led to
intensive research into techniques of compilation
(#compiler). It has been used in implementing $run-
time systems, orienting compilers to the syntax of
programming languages and in various optimization
techniques.

ALGOL 68

An imperative $pprogramming language which is an

advanced and logical development of PALGOL 60.

ALGOL 68 has its own basic design philosophy, the

so-called orthogonal principle. According to this the

language consists of a minimal number of universal

elements which can be used in any desired

combination.

(1) A minimal number of basic elements is available
for pobjects. In ALGOL 68 these elements are
the standard data types #pboolean, character,

pinteger and #real, as well as syntactically
defined character strings.

(2) From these basic elements, special constructors,
or mode-makers, can be used to build up more
complex data objects. These so-called object
structures (referred to as modes in ALGOL 68)
may be given a name and used to construct
further data objects. This constant generation of
new object structures by means of constructors

can be repeated without limit for as long or as
often as required. The five most important con-
structors for object structures in ALGOL 68 are

[ for constructing a 1-dimensional array
(Warray)

struct  for constructing #precords

union for representing the combination of
several object structures

ref for constructing an ‘“‘address™ (setting
up a reference or ppointer)

proc for producing a function or $procedure

(3) The number of possible actions is kept to a
minimum. The first of these are simple oper-
ations defined on basic elements, such as addi-
tion, division, equality, <, =, >, rounding,
absolute value, logical OR, etc. The second
group includes casting operations when passing
from one basic element to another (e.g. integer
to real). Thirdly, we can distinguish operations
which are associated with constructors. These
include searching for an element in a structure
(selection, e.g. of the ith element in a array) or
passing from a pointer object to the object being
pointed to (dereferencing). Fourthly, we can
include the generation of pvariables. Whenever a
variable is declared in a program, a suitable
memory location (address) is allocated to it (or
“generated”). The address is either assigned
with respect to the correct #block (stack-oriented
memory management declaration by loc) or it is
not (declaration by heap generator). The fifth
category of basic action includes the #assign,
#call and #jump statements.

(4) Just as object structures can be built up freely
from primitive elements, so can action construc-
tors be used to assemble complex actions from
the basic ones. This corresponds to the pexpres-
sions and #control structures of other program-
ming languages. Constructors of this type in
ALGOL 68 are as follows:

— The **go-on” symbol (semicolon), where the
action after the semicolon begins once the
action before it is completed;

— concurrent action constructor (represented
by a series of actions separated by commas
and enclosed by begin ... end; see entry
under Bconcurrency); -

— the if and case instruction;

— the while and count #loops;

— exit (Teave a structure and return a value).

Apart from the basic orthogonal design principle,

ALGOL 68 also has a number of other important
features. Examples are as follows.



ALGORITHM

10

— The concept of referencing, i.e. of referring to one
object structure by another. This is embodied in
the constructor ref.

— The concept of complete typing. Each value or
element which occurs must be a member of a
particular object structure (i.e. mode).

— The concept of complete description. This means
that, for every syntactically correct ALGOL 68
program, it is clear how it functions and executes,
i.e. a full #semantic description is also implied.
The orthogonal structure and other principles of

program design are reflected in many programming
languages which emerged after 1965 (such as pPAS-
CAL and ®ELAN). In the current state of the art
some features of ALGOL 68 (e.g. the value returned
by a function is itself a function) can be implemented
with an #interpreter but not a pcompiler — at least,
not according to existing criteria of pefficiency. Only
a small number of compilers for certain dialects of
ALGOL 68 are currently available, which limits the
computers on which programs can be run. Although
the revised Report of 1973 marked the end of the
development of ALGOL 68, it has had a lasting
influence on the evolution of other imperative pro-
gramming languages.

ALGORITHM

An algorithm is a precisely formulated set of instruc-
tions which can be carried out by a mechanical or
electronic device. Examples of algorithms are
instructions for adding, subtracting or multiplying
numbers, BEuclid’s algorithm for calculating the
greatest common divisor (ged), and all procedures
formulated in a Bprogramming language. Cooking
recipes, model-making instructions, musical scores,
rules for playing games and a number of procedures
and conventions encountered in everyday life have
algorithmic character. They are rarely explicitly for-
mulated, however, and often have to be interpreted
by whoever is carrying them out.

A computer algorithm specifies the step-by-step
process by which input data is converted into output
data. Expressed formally, an algorithm is a mapping,
f: 1— O, of the set of input data / into the set of
output data O. Historically, some attempts were
made to define exactly the mapping operations which
algorithms represent. However, the set of primitive
recursive functions (#primitive recursion) proved
inadequate for such a definition (PAckermann’s func-
tion), with the result that partially recursive functions
were introduced instead.

An algorithm can be described by a machine
which is mathematically precisely defined and which

carries out (executes) the steps specified in the algor-
ithm. The simplest models for such machines are
#Turing and #register machines. Such models are
valid if the machines they represent can in principle
be physically constructed. They include mathemati-
cal models of existing computers which are assumed
to have unlimited Pmemory capacity. However, it is
not necessary actually to build the machine. It is
enough to define its basic Binstruction set and
peontrol structures, i.e. the permissible combinations
of the basic instructions; we also specify how and
where the device will store data. In other words, we
define, not a real, but a virtual machine. This means
that we know either that it is possible in theory to
build such a device or that its operations can be
simulated by another machine. Virtual machines are
usually described using imperative programming lan-
guages, which is why programs are always algor-
ithms. We refer to an algorithm formulated in such a
way that it can be executed by a computer as a
program. For a particular machine an pinterpreter or
a pcompiler translates the program into the
computer’s own instruction set; the result is an execu-
table program.

The notion of an algorithm is very important in
computer science. It may be understood in a number
of different ways, e.g. a ‘program’, a ‘computable
function’ or a ‘solution to a set of logic formulae’. In
principle an algorithm is anything which a mahcine is
able to process. In this sense computers are said to
execute algorithms. If a problem cannot be solved
algorithmically (#decidability) then it cannot be
solved by a computer or any other machine.

We illustrate the various ways of describing or
representing algorithms using the factorial function
as an example.

flny=n!=12...-n

It is assumed that positive numbers are input into the
programs.

(a) The algorithm represented as a ®recursion
model:

f0)=1
fx+1)=(x+1)f(x)
(b) The algorithm as a BASIC program:

10 INPUT N

20 J=1

30 IFN=0THEN 70
40 J=J*N

50 N=N-1

60 GOTO 30

70 PRINT J

80 END



