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Preface

This book provides a picture of what can be done in differential equations with
advanced methods and software tools of symbolic computation. It focuses on the
symbolic-computational aspect of three kinds of fundamental problems in differ-
ential equations: transforming the equations, solving the equations, and studying
the structure and properties of their solutions. Modern research on these prob-
lems using symbolic computation, or more restrictively using computer algebra,
has become increasingly active since the early 1980s when effective algorithms
for symbolic solution of differential equations were proposed, and so were com-
puter algebra systems successfully applied to perturbation, bifurcation, and other
problems. Historically, symbolic integration, the simplest case of solving ordinary
differential equations, was already the target of the first computer algebra package
SAINT in the early 1960s.

With 20 chapters, the book is structured into three parts with both tutorial
surveys and original research contributions: the first part is devoted to the quali-
tative study of differential systems with symbolic computation, including stability
analysis, establishment of center conditions, and bifurcation of limit cycles, which
are closely related to Hilbert’s sixteenth problem. The second part is concerned
with symbolic solutions of ordinary and partial differential equations, for which
normal form methods, reduction and factorization techniques, and the computa-
tion of conservation laws are introduced and used to aid the search. The last part
is concentrated on the transformation of differential equations into such forms that
are better suited for further study and application. It includes symbolic elimina-
tion and triangular decomposition for systems of ordinary and partial differential
polynomials. A 1991 paper by Wen-tsiin Wu on the construction of Grobner bases
based on Riquier—Janet’s theory, published in China and not widely available to
the western readers, is reprinted as the last chapter. This book should reflect the
current state of the art of research and development in differential equations with
symbolic computation and is worth reading for researchers and students working
on this interdisciplinary subject of mathematics and computational science. It may
also serve as a reference for everyone interested in differential equations, symbolic
computation, and their interaction.

The idea of compiling this volume grew out of the Seminar on Differential
Equations with Symbolic Computation (DESC 2004), which was held in Beijing,
China in April 2004 (see http://www-calfor.lip6.fr/~wang/DESC2004) to facilitate
the interaction between the two disciplines. The seminar brought together active
researchers and graduate students from both disciplines to present their work and
to report on their new results and findings. It also provided a forum for over 50
participants to exchange ideas and views and to discuss future development and
cooperation. Four invited talks were given by Michael Singer, Lan Wen, Wen-tsiin
Wi, and Zhifen Zhang. The enthusiastic support of the seminar speakers and the



vi

high quality of their presentations are some of the primary motivations for our
endeavor to prepare a coherent and comprehensive volume with most recent ad-
vances on the subject for publication. In addition to the seminar speakers, several
distinguished researchers who were invited to attend the seminar but could not
make their trip have also contributed to the present book. Their contributions have
helped enrich the contents of the book and make the book beyond a proceedings
volume. All the papers accepted for publication in the book underwent a formal
review-revision process.

DESC 2004 is the second in a series of seminars, organized in China, on
various subjects interacted with symbolic computation. The first seminar, held in
Hefei from April 24-26, 2002, was focused on geometric computation and a book
on the same subject has been published by World Scientific. The third seminar
planned for April 2006 will be on symbolic computation in education.

The editors gratefully acknowledge the support provided by the Schools of
Science and Advanced Engineering at Beihang University and the Key Laboratory
of Mathematics, Informatics and Behavioral Semantics of the Chinese Ministry of
Education for DESC 2004 and the preparation of this book. Our sincere thanks
go to the authors for their contributions and cooperation, to the referees for their
expertise and timely help, and to all colleagues and students who helped for the
organization of DESC 2004.

Beijing Dongming Wang
May 2005 Zhiming Zheng
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Symbolic Computation of Lyapunov Quantities
and the Second Part of Hilbert’s Sixteenth
Problem

Stephen Lynch

Abstract. This tutorial survey presents a method for computing the Lyapunov
quantities for Liénard systems of differential equations using symbolic manip-
ulation packages. The theory is given in detail and simple working MATLAB
and Maple programs are listed in this chapter. In recent years, the author
has been contacted by many researchers requiring more detail on the algo-
rithmic method used to compute focal values and Lyapunov quantities. It is
hoped that this article will address the needs of those and other researchers.
Research results are also given here.

Mathematics Subject Classification (2000). Primary 34C07; Secondary 37M20.

Keywords. Bifurcation, Liénard equation, limit cycle, Maple, MATLAB, small-
amplitude.

1. Introduction

Poincaré began investigating isolated periodic cycles of planar polynomial vector
fields in the 1880s. However, the general problem of determining the maximum
number and relative configurations of limit cycles in the plane has remained unre-
solved for over a century. In the engineering literature, limit cycles in the plane can
correspond to steady-state behavior for a physical system (see [25], for example),
so it is important to know how many possible steady states there are. There are
applications in aircraft flight dynamics and surge in jet engines, for example.

In 1900, David Hilbert presented a list of 23 problems to the International
Congress of Mathematicians in Paris. Most of the problems have been solved,
either completely or partially. However, the second part of the sixteenth problem
remains unsolved. Ilyashenko [37] presents a centennial history of Hilbert’s 16th
problem and Li [19] has recently written a review article.
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The Second Part of Hilbert’s Sixteenth Problem. Consider planar polynomial
systems of the form

i;:P(Ivy)> y.:Q(mvy)’ (11)

where P and @ are polynomials in z and y. The question is to estimate the maximal
number and relative positions of the limit cycles of system (1.1). Let H,, denote
the maximum possible number of limit cycles that system (1.1) can have when P
and @ are of degree n. More formally, the Hilbert numbers H,, are given by

H, = sup {r(P,Q) : P,0Q < n},

where 0 denotes “the degree of” and 7(P, @) is the number of limit cycles of system
(1.1).

Dulac’s Theorem states that a given polynomial system cannot have infinitely
many limit cycles. This theorem has only recently been proved independently by
Ecalle et al. [13] and Ilyashenko [36], respectively. Unfortunately, this does not
imply that the Hilbert numbers are finite.

Of the many attempts to make progress in this question, one of the more
fruitful approaches has been to create vector fields with as many isolated periodic
orbits as possible using both local and global bifurcations [3]. There are relatively
few results in the case of general polynomial systems even when considering lo-
cal bifurcations. Bautin [1] proved that no more than three small-amplitude limit
cycles could bifurcate from a critical point for a quadratic system. For a homoge-
neous cubic system (no quadratic terms), Sibirskii [33] proved that no more than
five small-amplitude limit cycles could be bifurcated from one critical point. Re-
cently, Zoladek [39] found an example where 11 limit cycles could be bifurcated
from the origin of a cubic system, but he was unable to prove that this was the
maximum possible number.

Although easily stated, Hilbert’s sixteenth problem remains almost com-
pletely unsolved. For quadratic systems, Songling Shi [32] has obtained a lower
bound for the Hilbert number Hy > 4. A possible global phase portrait is given
in Figure 1. The line at infinity is included and the properties on this line are de-
termined using Poincaré compactification, where a polynomial vector field in the
plane is transformed into an analytic vector field on the 2-sphere. More detail on
Poincaré compactification can be found in [27]. There are three small-amplitude
limit cycles around the origin and at least one other surrounding another critical
point. Some of the parameters used in this example are very small.

Blows and Rousseau [4] consider the bifurcation at infinity for polynomial
vector fields and give examples of cubic systems having the following configura-
tions:

{(4),1},{(3),2},{(2),5},{(4),2},{(1), 5} and {(2),4},

where {(I), L} denotes the configuration of a vector field with ! small-amplitude
limit cycles bifurcated from a point in the plane and L large-amplitude limit cycles
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FIGURE 1. A possible configuration for a quadratic system with

four limit cycles: one of large amplitude and three of small ampli-
tude.

simultaneously bifurcated from infinity. There are many other configurations pos-
sible, some involving other critical points in the finite part of the plane as shown
in Figure 2. Recall that a limit cycle must contain at least one critical point.

By considering cubic polynomial vector fields, in 1985, Jibin Li and Chunfu
Li [18] produced an example showing that Hs > 11 by bifurcating limit cycles out
of homoclinic and heteroclinic orbits; see Figure 2.

FIGURE 2. A possible configuration for a cubic system with 11
limit cycles.

Returning to the general problem, in 1995, Christopher and Lloyd [7] consid-
ered the rate of growth of H,, as n increases. They showed that H, grows at least
as rapidly as n?logn.

In recent years, the focus of research in this area has been directed at a
small number of classes of systems. Perhaps the most fruitful has been the Liénard
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system. A method for computing focal values and Lyapunov quantities for Liénard
systems is given in detail in the next section. Liénard systems provide a very
suitable starting point as they do have ubiquity for systems in the plane [14, 16, 28].

2. Small-Amplitude Limit Cycle Bifurcations

The general problem of determining the maximum number and relative configu-
rations of limit cycles in the plane has remained unresolved for over a century.
Both local and global bifurcations have been studied to create vector fields with
as many limit cycles as possible. All of these techniques rely heavily on symbolic
manipulation packages such as Maple, and MATLAB and its Symbolic Math Tool-
box. Unfortunately, the results in the global case number relatively few. Only in
recent years have many more results been found by restricting the analysis to
small-amplitude limit cycle bifurcations.

It is well known that a nondegenerate critical point, say Xg, of center or focus
type can be moved to the origin by a linear change of coordinates, to give

t=Ar—y+plz,y), ¥=z+y+q(z,y), (2.1)

where p and q are at least quadratic in « and y. If A # 0, then the origin is
structurally stable for all perturbations.

Definition 2.1. A critical point, say xoq, is called a fine focus of system (1.1) if it
is a center for the linearized system at xq. Equivalently, if A = 0 in system (2.1),
then the origin is a fine focus.

In the work to follow, assume that the unperturbed system does mot have a
center at the origin. The technique used here is entirely local; limit cycles bifurcate
out of a fine focus when its stability is reversed by perturbing A and the coefficients
arising in p and g. These are said to be local or small-amplitude limit cycles. How
close the origin is to being a center of the nonlinear system determines the number
of limit cycles that may be obtained from bifurcation. The method for bifurcating
limit cycles will be given in detail here.

By a classical result, there exists a Lyapunov function, V(z,y) = Va(z,y) +
Valz,y)+-- -+ Vi(z,y)+- - - say, where V}, is a homogeneous polynomial of degree
k, such that
%27727"2+T/47"4+---+7727;7‘2i+'~‘, (2.2)
where 7?2 = x2 + y2. The ny; are polynomials in the coefficients of p and ¢ and
are called the focal values. The origin is said to be a fine focus of order k if
Ny = Mg = -+ = Nar, = 0 but Mar42 # 0. Take an analytic transversal through
the origin parameterized by some variable, say c. It is well known that the return
map of (2.1), ¢ — h(c), is analytic if the critical point is nondegenerate. Limit
cycles of system (2.1) then correspond to zeros of the displacement function, say
d(c) = h(c) — c. Hence at most k limit cycles can bifurcate from the fine focus.
The stability of the origin is clearly dependent on the sign of the first non-zero
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focal value, and the origin is a nonlinear center if and only if all of the focal values
are zero. Consequently, it is the reduced values, or Lyapunov quantities, say L(j),
that are significant. One needs only to consider the value 72 reduced modulo the
ideal (72,74, ..,M2k—2) to obtain the Lyapunov quantity L(k — 1). To bifurcate
limit cycles from the origin, select the coeflicients in the Lyapunov quantities such
that
|L(m)| < |L(m+1)| and L(m)L(m+1) <0,

for m = 0,1,...,k — 1. At each stage, the origin reverses stability and a limit
cycle bifurcates in a small region of the critical point. If all of these conditions
are satisfied, then there are exactly k£ small-amplitude limit cycles. Conversely, if
L(k) # 0, then at most k limit cycles can bifurcate. Sometimes it is not possible
to bifurcate the full complement of limit cycles.

The algorithm for bifurcating small-amplitude limit cycles may be split into
the following four steps:

1. computation of the focal values using a mathematical package;
2. reduction of the n-th focal value modulo a Grobner basis of the ideal gener-
ated by the first n — 1 focal values (or the first n — 1 Lyapunov quantities);
3. checking that the origin is a center when all of the relevant Lyapunov quan-
tities are zero;
4. bifurcation of the limit cycles by suitable perturbations.
Dongming Wang [34, 35] has developed software to deal with the reduction part
of the algorithm for several differential systems. For some systems, the following
theorems can be used to prove that the origin is a center.

The Divergence Test. Suppose that the origin of system (1.1) is a critical point of
focus type. If
o(yP)  0(¥Q)

div (v X) = 6—x+8—y =0,

where v : R2 — R2, then the origin is a center.
The Classical Symmetry Argument. Suppose that A = 0 in system (2.1) and that
either
(i) p(z,y) = —p(z, —y) and q(z,y) = q(z, —y) or
(ii) p(z,y) = p(—2,y) and q(z,y) = —q(-z,y).
Then the origin is a center.

Adapting the classical symmetry argument, it is also possible to prove the
following theorem.
Theorem 2.1. The origin of the system
G'(z)
2
where F' and H are polynomials, G(z) = fox g(s)ds with g(0) = 0 and g(x) sgn(x) >
0 for z # 0, is a center.

i=y—F(G), §=- H(G(z)),
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To demonstrate the method for bifurcating small-amplitude limit cycles, con-
sider Liénard equations of the form

{E:y~F(.’)§), y= _g($)7 (23)

where F(x) = a1z +asz?+- - -+ a,x* and g(x) = x+box? + b3z +- - -+ b,z¥. This
system has proved very useful in the investigation of limit cycles when showing
existence, uniqueness, and hyperbolicity of a limit cycle. In recent years, there have
also been many local results; see, for example, [9]. Therefore, it seems sensible to
use this class of system to illustrate the method.

The computation of the first three focal values will be given. Write

Vie(z,y) Z V; oty
i+ji=k

and denote V; ; as being odd or even according to whether ¢ is odd or even and that
Vi,; is 2-odd or 2-even according to whether j is odd or even, respectively. Solving
equation (2.2), it is easily seen that V5 = 2(x + y?) and 1y = —a;. Therefore,
set a; = 0. The odd and even coefficients of V3 are then given by the two pairs of
equations

3V30 — 2Vi2 = by,

Vl,g =0
and
*‘/2,1 = a2,
2Vo1 —3Vo3 =0,
respectively. Solve the equations to give
1
Vi = §b2w3 — agxzy — gagy?’.
Both 74 and the odd coefficients of V, are determined by the equations
—na — V31 = as,
—27]4 + 3V371 — 3V1,3 = —2a2b2,
—T4 + V1’3 = 0.

The even coefficients are determined by the equations
4Vyo — 2Va = by — 2a3,
2Va,2 —4Vpa =0

and the supplementary condition V32 = 0. In fact, when computing subsequent
coeflicients for Vj,,, it is convenient to require that Vam,2m = 0. This ensures that
there will always be a solution. Solving these equations gives

1 ;
Vi= (b3~ 2a5)x" — (s + ag)z’y + nazy®
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and

—_

Ny = g(Qazbg = 3&3).

Suppose that 74 = 0 so that a3 = %ang. It can be checked that the two sets of
equations for the coefficients of V5 give

b4 2a2b2 5 . 8a3 4(14 2(L2b3
VF(%‘ B G Rk R G i e o K

16a3  8a 4asb
n ( 5 4 2 3) y5.

15 15 15

The coefficients of Vg may be determined by inserting the extra condition Vj o +
V2,4 = 0. In fact, when computing subsequent even coefficients for Vy, 2, the extra
condition Vo om+2 + Vam42,.2m = 0, is applied, which guarantees a solution. The
polynomial Vi contains 27 terms and will not be listed here. However, ng leads to
the Lyapunov quantity

L(2) = 6azby — 10a2babs + 20a4by — 15as5.

Lemma 2.1. The first three Lyapunov quantities for system (2.3) are L(0) = —aq,
L(l) = 2a2b2 5= 3&3, and L(?) = 6(12()4 =3 10a2b2b3 —+ 20a4b2 = 15a5.

Ezample. Prove that
(i) there is at most one small-amplitude limit cycle when 0F = 3,9g = 2 and
(ii) there are at most two small-amplitude limit cycles when F = 3,9¢g = 3,
for system (2.3).
Solutions. (i) Now L(0)=0 if a; = 0 and L(1) = 0 if a3 = 2asbs. Thus system (2.3)

becomes
&=y —agx?— §a2b2(E3, g = —x — boz?,
and the origin is a center by Theorem 2.1. Therefore, the origin is a fine focus of

order one if and only if a; = 0 and 2a2bs — 3as # 0. The conditions are consistent.
Select a3z and a; such that

|L(0)| < |L(1)] and L(0)L(1) < 0.

The origin reverses stability once and a limit cycle bifurcates. The perturbations
are chosen such that the origin reverses stability once and the limit cycles that
bifurcate persist.

(ii) Now L(0) = 0 if ay = 0, L(1) = 0 if ag = Zasbo, and L(2) = 0 if
a2b2b3 = 0. Thus L(2) =0if

(a) az =0,

(b) b3 =0, or

(C) b2 =0.
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If condition (a) holds, then a3 = 0 and the origin is a center by the divergence
test (divX = 0). If condition (b) holds, then the origin is a center from result (i)
above. If condition (c) holds, then a3 = 0 and system (2.3) becomes

f:y_a‘sza yzixbexBa
and the origin is a center by the classical symmetry argument. The origin is thus

a fine focus of order two if and only if a; = 0 and 2a3b2 — 3asz = 0 but abybs # 0.
The conditions are consistent. Select b3, az, and a; such that

|L(1)| < |L(2)], L(1)L(2) < 0 and |L(0)| < |L(1)|, L(0)L(1) < 0.
The origin has changed stability twice, and there are two small-amplitude limit

cycles. The perturbations are chosen such that the origin reverses stability twice
and the limit cycles that bifurcate persist.

3. Symbolic Computation

Readers can download the following program files from the Web. The MATLAB
M-file lists all of the coefficients of the Lyapunov function up to and including
degree six terms. The output is also included for completeness. The program was
written using MATLAB version 7 and the program files can be downloaded at

http://www.mathworks.com/matlabcentral /fileexchange

under the links “Companion Software for Books” and “Mathematics”.

% MATLAB Program - Determining the coefficients of the Lyapunov
% function for a quintic Lienard system.

% V3=[V30;V21;V12;V03], V4=[V40;V31;V22;V13;V04;eta4d],
% V6=[V50;V41;V32;V23;V14;V05],

% V6=[V60;V51;V42;V33;V24;V15;V06;etab]

% Symbolic Math toolbox required.

clear all

syms al a2 b2 a3 b3 a4 b4 a5 bb;

A=[3 0 -20;0010;0-100;020 -3];

B=[b2; 0; a2; 0];

V3=A\B

A=[0 -1 00 0-1;030-30-2;00010-1;40-200 0;
0020-40; 00100 0];

B=[a3; -2%a2*b2; 0; b3-2*a2°2;0;0];

V4=A\B

A=[60-2000;0030-40;000010;0-10000;040-300;
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00020 -5];
B=[b4-10%a2~2%b2/3;0;0;a4-2*a2"3;-2*a2%b3;0] ;

V5=A\B

00000;0040-4000;000
000;0-100000-1;050 -3
-50-3;0000010 -1];
B=[b5-6*a2*ad-4*a2~2*b2"2/3+8*a2"4;16*a2"~4/3+4*a2"~2¥b3/3-8*a2*ad/3;
0;0;ab5-8%a2"3%b2/3;-2*a2*bd+8*a2"3*b2+2*a2*xb2*xb3-4*ad*b2;
16*a2~3*b2/3+4*a2*b2*b3/3-8*ad*b2/3;0] ;

-2 020 -6 0;
101 000 -3;
030
5-6

V6=A\B

LO=-al

etad=V4(6,1)

Li=maple(’numer (-3/8*a3+1/4*a2*b2)’)

a3=2%a2*b2;

etab=V6(8,1)

L2=maple (’numer (-5/16%ab+1/8*a2*b4-5/24%a2*b2*b3+5/12*ad*b2) ’)
%End of MATLAB Program

V3 =

[ 1/3%b2]
[ -a2]
[ 0]
[ -2/3%*a2]

V4 =

[ 1/4xb3-1/2%a2"2]
[ -5/8%a3-1/4*a2xb2]

[ 0]

[ -3/8*a3+1/4*a2%b2]

i 0]

[ -3/8%a3+1/4*a2%b2]

V6 =

[ 1/5%b4-2/3%a2"2xb2]
[ -a4+2%a2"~3]
[ 0]
[ -4/3%ad+8/3%a2"~3+2/3*a2%b3]
L 0]
[ -8/15%a4+16/15%a2"3+4/15%a2xb3]

V6 =



