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Preface

Supersymmetry was discovered by physicists in the 1970s. The mathematical treatment
of it began much later and grew out of the works notably of Berezin, Kostant, Leites,
Manin, Bernstein, Freed, Deligne, Morgan, Varadarajan and others. These works are
allin what one may call the differential category and contain many additional references
to the subject.

This monograph has grown out of the desire to present a moderately brief and
focussed account of the mathematical foundations of supersymmetry both in the dif-
ferential and algebraic categories. Our view is that supergeometry and super Lie theory
are beautiful areas and deserve much attention.

Our intention was not to write an encyclopedic treatment of supersymmetry but to
supply only the foundational material that will allow the reader to penetrate the more
advanced papers in the wide literature on this subject. For this reason we do not treat the
differential and symplectic supergeometry and we are unable to give a comprehensive
treatment of the representation theory of Lie supergroups and Lie superalgebras, which
can be found in more advanced papers by Kac, Serganova, Penkov, Duflo, Cassinelli
et al. and so on.

Our work is primarily directed to second or third year graduate students who have
taken a one year graduate course in algebra and a beginning course in Lie groups and Lie
algebras. We have provided a discussion without proofs of the classical theory, which
will serve as a departure point for our supergeometric treatment. Our book can very
well be used as a one-semester course or a participating seminar on supersymmetry,
directed to second and third year graduate students.

The language used in this monograph is that of the functor of points. Since this lan-
guage is not always familiar even to second-year graduate students we have attempted
to explain it even at the level of classical geometry. Apart from being the most natural
medium for understanding supergeometry, it is also, remarkably enough, the language
closest to the physicists’ method of working with supersymmetry.

We wish to thank professor V. S. Varadarajan for introducing us to this beautiful
part of mathematics. He has truly inspired us through his insight and deep under-
standing of the subject. We also wish to thank Dr. L. Balduzzi, Prof. G. Cassinelli,
Prof. A. Cattaneo, Prof. M. Duflo, Prof. F. Gavarini, Prof. A. Kresch, Prof. M. A. Lledo,
Prof. L. Migliorini, Prof. 1. M. Musson, Prof. V. Ovsienko, Dr. E. Petracci, Prof. A. Vis-
toli and Prof. A. Zubkov for helpful remarks. We also want to thank the UCLA De-
partment of Mathematics, the Dipartimento di Matematica, Universita di Bologna, and
the Dipartimento di Fisica, Universita di Genova, for support and hospitality during
the realization of this work.



Introduction

Supersymmetry (SUSY) is the machinery mathematicians and physicists have devel-
oped to treat two types of elementary particles, bosons and fermions, on the same
footing. Supergeometry is the geometric basis for supersymmetry; it was first dis-
covered and studied by physicists, Wess and Zumino [80], Salam and Strathdee [65]
(among others), in the early 1970s. Today supergeometry plays an important role in
high energy physics. The objects in super geometry generalize the concept of smooth
manifolds and algebraic schemes to include anticommuting coordinates. As a result,
we employ the techniques from algebraic geometry to study such objects, namely
A. Grothendieck’s theory of schemes.

Fermions include all of the material world; they are the building blocks of atoms.
Fermions do not like each other. This is in essence the Pauli exclusion principle which
states that two electrons cannot occupy the same quantum mechanical state at the same
time. Bosons, on the other hand, can occupy the same state at the same time.

Instead of looking at equations that simply describe either bosons or fermions sep-
arately, supersymmetry seeks out a description of both simultaneously. Transitions
between fermions and bosons require that we allow transformations between the com-
muting and anticommuting coordinates. Such transitions are called supersymmetries.

In classical Minkowski space, physicists classify elementary particles by their mass
and spin. Einstein’s special theory of relativity requires that physical theories must be
invariant under the Poincaré group. Since observable operators (e.g. Hamiltonians)
must commute with this action, the classification corresponds to finding unitary repre-
sentations of the Poincaré group. In the SUSY world, this means that mathematicians
are interested in unitary representations of the super Poincaré group. A “super” rep-
resentation gives a “multiplet” of ordinary particles which include both fermions and
bosons.

Up to this point, there have been no colliders that can produce the energy required
to physically expose supersymmetry. However, the Large Hadron Collider (LHC)
in CERN (Geneva, Switzerland) became operational in 2007. Physicists are plan-
ning proton—proton and proton—antiproton collisions which will produce energies high
enough where it is believed supersymmetry can be seen. Such a discovery will solidify
supersymmetry as the most viable path to a unified theory of all known forces. Even
before the boson—fermion symmetry which SUSY presupposes is proved to be physical
fact, the mathematics behind the theory is quite remarkable. The concept that space is
an object built out of local pieces with specific local descriptions has evolved through
many centuries of mathematical thought. Euclidean and non-Euclidean geometry, Rie-
mann surfaces, differentiable manifolds, complex manifolds, algebraic varieties, and
so on represent various stages of this concept. In Alexander Grothendieck’s theory of
schemes, we find a single structure that encompasses all previous ideas of space. How-
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ever, the fact that conventional descriptions of space will fail at very small distances
(Planck length) has been the driving force behind the discoveries of unconventional
models of space that are rich enough to portray the quantum fluctuations of space at
these unimaginably small distances. Supergeometry is perhaps the most highly de-
veloped of these theories; it provides a surprising application and continuation of the
Grothendieck theory and opens up large vistas. One should not think of it as a mere
generalization of classical geometry, but as a deep continuation of the idea of space
and its geometric structure.

Out of the first supergeometric objects constructed by the pioneering physicists
came mathematical models of superanalysis and supermanifolds independently by
F.A. Berezin [10], B. Kostant [49], D.A. Leites [53], and De Witt [25]. The idea
to treat a supermanifold as a ringed space with a sheaf of Z /27Z-graded algebras was
introduced in these early works. Later, Bernstein [22] and Leites [53] used techniques
from algebraic geometry to deepen the study of supersymmetry. In particular, Bern-
stein and Leites accented the functor of points approach from Grothendieck’s theory
of schemes. Interest in SUSY has grown in the past decade, and most recently works
by V.S. Varadarajan [76] and others have continued exploration of this beautiful area
of physics and mathematics and have inspired this work. Given the interest and the
number of people who have contributed greatly to this field from various perspectives,
it is impossible to give a fair and accurate account of all the works related to ours. We
have nevertheless made an attempt and have provided bibliographical references at the
end of each chapter, pointing out the main papers that have inspired our work. We
apologize for any involuntary omissions.

In our exposition of mathematical SUSY, we use the language of 7-points to build
supermanifolds up from their foundations in Z /27 -graded linear algebra (superalge-
bra). The following is a brief description of our work.

In Chapter 1 we begin by studying Z /2Z-graded linear objects. We define super
vector spaces and superalgebras, then generalize some classical results and ideas from
linear algebra to the super setting. For example, we define a super Lie algebra, discuss
supermatrices, and formulate the super trace and determinant (the Berezinian). We
also discuss the Poincaré-Birkhoff—Witt theorem in full detail.

In Chapter 2 we provide a brief account of classical sheaf theory with a section
dedicated to schemes. This is meant to be an introductory chapter on this subject and
the advanced reader may very well skip it.

In Chapter 3 we introduce the most basic geometric structure: a superspace. We
present some general properties of superspaces which lead into two key examples of
superspaces, supermanifolds and superschemes. Here we also introduce the notion of
T -points which allows us to treat our geometric objects as functors; it is a fundamental
tool to gain geometric intuition in supergeometry.

Chapters 4-9 lay down the full foundations of C °°-supermanifolds over R. In
Chapter 4, we give a complete proof of foundational results like the chart theorem
and the correspondence between morphisms of supermanifolds and morphisms of the
superalgebras of their global sections. In Chapter 5 we discuss the local structure
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of morphisms proving the analog of the inverse function, submersion and immersion
theorems. In Chapter 6 we prove the local and global Frobenius theorem on super-
manifolds. In Chapters 7 and 8 we give special attention to super Lie groups and their
associated Lie algebras, as well as look at how group actions translate infinitesimally.
We then use infinitesimal actions and their characterizations to build the super Lie sub-
group, subalgebra correspondence. Finally in Chapter 9 we discuss quotients of Lie
supergroups.

Chapters 10, 11 expand upon the notion of a superscheme which we introduce
in Chapter 3. We immediately adopt the language of 7'-points and give criteria for
representability: in supersymmetry it is often most convenient to describe an ob-
ject functorially, and then show that it is representable. We explicitly construct the
Grassmannian functorially, then use the representability criterion to show that it is a
superscheme. Chapter 10 concludes with an examination of the infinitesimal theory of
superschemes.

We continue this exploration in Chapter 11 from the point of view of algebraic
supergroups and their Lie algebras. We discuss the linear representations of affine
algebraic supergroups; in particular we show that all affine supergroups are realized as
subgroups of the general linear supergroup.

We have made an effort to make this work self-contained and suggest that the reader
begins with Chapters 1-3, but Chapters 4-9 and Chapters 10-11 are somewhat disjoint
and may be read independently.
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1

Z |27 -graded linear algebra

The theory of manifolds and algebraic geometry are ultimately based on linear algebra.
Similarly the theory of supermanifolds needs super linear algebra, which is linear
algebra in which vector spaces are replaced by vector spaces with a Z/27Z-grading,
namely, super vector spaces. The basic idea is to develop the theory along the same
lines as the usual theory, adding modifications whenever necessary. We therefore first
build the foundations of linear algebra in the super context. This is an important starting
point as we later build super geometric objects from sheaves of super linear spaces.
Let us fix a ground field k, char(k) # 2, 3.

1.1 Super vector spaces and superalgebras

Definition 1.1.1. A super vector space is a Z /27 -graded vector space
V=Vod W
where elements of 1} are called “even” and elements of V; are called “odd”.

Definition 1.1.2. The parity of v € V, denoted by p(v) or |v], is defined only on
non-zero homogeneous elements, that is elements of either V or V;:

0if v € Vp,

p(v) = ol = {nfv ev,.

Since any element may be expressed as the sum of homogeneous elements, it suffices
to consider only homogeneous elements in the statement of definitions, theorems, and
proofs.

Definition 1.1.3. The superdimension of a super vector space V is the pair (p, q)
where dim(Vy) = p and dim(V}) = g as ordinary vector spaces. We simply write
dim(V) = plq.

From now on we will simply refer to the superdimension as the dimension when it
is clear that we are working with super vector spaces. If dim(V) = p|q, then we can

find a basis {ej, ..., ep} of Vy and a basis {€;, ..., €4} of V; so that V' is canonically
isomorphic to the free k-module generated by the {e,...,ep,,€1,...,€4}. We denote
this k-module by kP4 and we will call (eq, .. ., ep,€1,...,€q) the canonical basis of

kP4, The (e;) form a basis of k? = ké’lq and the (¢;) form a basis for k9 = kflq.
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Definition 1.1.4. A morphism from a super vector space V' to a super vector space W
is a linear map from V' to W preserving the Z /27Z-grading. Let Hom(V, W) denote
the vector space of morphisms V — W.

Thus we have formed the category' of super vector spaces that we denote by (smod).
It is important to note that the category of super vector spaces also admits an “inner
Hom”, which we denote by Hom(V, W); for super vector spaces V, W, Hom(V, W)
consists of all linear maps from V' to W it is made into a super vector space itself by
the following definitions:

Hom(V,W)o ={T: V — W | T preserves parity} (= Hom(V, W));

Hom(V,W); ={T:V — W | T reverses parity}.

If V = k™" W = kP4 we have, in the canonical basis (ei €j):

Ho_m(V.W)o={(f)1 g)} and Ho_m(v,wn={(fj g)}

where A, B, C, D are respectively (p x m), (p x n), (g x m), (g x n)-matrices with
entries in k.

In the category of super vector spaces we have the parity reversing functor TI(V —
I1V') defined by

(IMV)o = Vi, IIV) = W.

The category of super vector spaces admits tensor products: for super vector spaces
V,W,V ® W is given the Z /27 -grading as follows:

VW)= Vo® W) & (V1 ® W),
VeW) =Ve® W) e (Vi ® W).

The assignment V, W — V ® W is additive and exact in each variable as in the
ordinary vector space category. The object k& functions as a unit element with respect
to tensor multiplication ®; and tensor multiplication is associative, i.e., the two products
U(V@W)and (U®V)®W are naturally isomorphic. Moreover, V QW =~ W@V
by the commutativity map

CV,WZV®W—)W®V

where v @ w > (=1)?I?ly @ v.

The significance of this definition is as follows. If we are working with the category
of vector spaces, the commutativity isomorphism takes v ® w to w ® v. In super linear
algebra we have to add the sign factor in front. This is a special case of the general

'We refer the reader not accustomed to category language to Appendix B.1.
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principle called the “sign rule” that one finds in some physics and mathematics litera-
ture. The principle says that in making definitions and proving theorems, the transition
from the usual theory to the super theory is often made by just simply following this
principle, which introduces a sign factor whenever one reverses the order of two odd
elements. The functoriality underlying the constructions makes sure that the definitions
are all consistent.
The commutativity isomorphism satisfies the so-called hexagon diagram:
UoVeWw i L VWU

cU.v ‘uw

VoUW

where, if we had not suppressed the arrows of the associativity morphisms, the diagram
would have the shape of a hexagon.

The definition of the commutativity isomorphism, also informally referred to as the
sign rule, has the following very important consequence. If V7, ..., V, are super vector
spaces and o and t are two permutations of n elements, no matter how we compose
associativity and commutativity morphisms, we always obtain the same isomorphism
from Vo(1) ® -+ @ Vo) to Vo) ® -+ @ Vi(n) namely:

Vo) @ @ Vo) = Vo) ® -+ @ Vi)

Va(1) @+ @ Vg(n) —> (_I)Nvt(l) ® - ® Vi(n)

where N is the number of pairs of indices i, j such that v; and vj are oddand 0" (i) <
o~ 1(j) with 71(i) > t71(j).
The dual, V*, of V is defined as

V* := Hom(V, k).

Notice that, if V' is even, thatis V = Vj, we have V* is the ordinary dual of V,
consisting of all even morphisms V — k. If V is odd, thatis V = V4, then V* is also
an odd vector space and consists of all odd morphisms V! — k. This is because any
morphism from V; to k = k'l is necessarily odd since it sends odd vectors into even
ones.

The category of super vector spaces thus becomes what is known as a tensor category
with inner Hom and dual. We start by recalling the universal property of the tensor
product.

Proposition 1.1.5. Let V and W be two super vector spaces and [ a bilinear map

of V. x W into a third super vector space Z. Then there exists a unique morphism
g: VW — Z such that

gv®w)= flv,w) (weV, weW).
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Proof. See [51], Ch. X VL. O

Remark 1.1.6. The object V® =V ® --- ® V (n times) for a super vector space V
is perfectly well defined. We can extend this notion to make sense of V®"" via the
parity reversing functor I1. Define

Vi = Y x Vxx VxII(V) x TI(V) x --- x TI(V),
R e——

n times

m times

from which the definition of V ®"1" follows by the universal property. In other words,
we have:

yerm .—y@Ve - @Vel(V)®M(V)® - ® (V)
where the parity is coming from the tensor product.

In the ordinary setting, an algebra is a vector space A with a multiplication which
is bilinear. We may therefore think of it as a vector space A together with a linear map
A ® A — A. We now define a superalgebra in the same way:

Definition 1.1.7. A superalgebra is a super vector space A together with a multiplica-
tion morphismt: A® A — A.

We then say that a superalgebra A is (super)commutative if
TOC4A=T,
that is, if the product of homogeneous elements obeys the rule
ab = (—1)llPlpq,

This is an example of the sign rule mentioned earlier. Note that the signs do not
appear in the definition; this is the advantage of the categorical view point which
suppresses signs and therefore streamlines the theory.

Similarly we say that A is associative if

ToT®Id=710id® 1

on A® A® A. In other words if (ab)c = a(bc). We also say that A has a unit if there
is an even element 1 so that

(l®a)=1(a®1)=a

foralla € A, thatisifa-1=1-a =a.
The tensor product A ® B of two superalgebras A and B is again a superalgebra,
with multiplication defined as

(@a®b)(c®d)=(-1)?ac ® bd).

As an example of associative superalgebra we are going to define the tensor super-
algebra.
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Definition 1.1.8. Let V be a super vector space. We define tensor superalgebra to be
the super vector space

TV)=Vve. TV)=EPVe. TH=EHVe,

n>0 n even n odd

together with the product defined, as usual, via the ordinary bilinear map ¢, s: V& x
Ves V®(r+s),

¢r,s(vi| ®'”®vir"w]’l ®®wh) — vi| ®...®vir ®w“ ...®sz_

One can check that T'(V') is a well-defined associative superalgebra with unit, which
is noncommutative except when V' is even and one-dimensional.

From now on we will assume that all superalgebras are associative and with unit
unless specified. Moreover we shall denote the category of commutative superalgebras
by (salg).

If we take a super vector space and mod out the odd part, we obtain a classical (that
is, purely even) vector space. In a superalgebra the corresponding object is defined
by taking the quotient by the ideal generated by the odd elements. This allows one to
always refer back to the classical setting.

We denote by J4 the ideal in the commutative superalgebra A generated by the odd
elements in A.

Example 1.1.9 (Grassmann coordinates). Let

A=kl,..., tp, 01, ...,064]

where the 11, ..., 1, are ordinary indeterminates and the 0, .. ., 0, are odd indetermi-
nates, i.e., they behave like Grassmann coordinates:

6:6; = —0;0;.
(This of course implies that 91-2 = 0 for all i.) In other words we can view A as
the ordinary tensor product k[tq,...,t,] ® A(6y,...,64), where A(6y,...,0,) is the
exterior algebra generated by 6y, ..., 4.

As one can readily check, A is a supercommutative algebra. In fact,

Ao = {fo+ X feven JIO1 | T ={i1 <--- < ir}}
where 0y = 6;,6;, ...0;,,|I| =r and fo, fr € k[t1,...,1p], and

A= { X joaa J705 1 T = {1 <o+ < js}}

Note that although the {6;} € A1, there are plenty of nilpotents in A; take for example
91 92 € Ayp.

This example is important since any finitely generated commutative superalgebra
is isomorphic to a quotient of the algebra A by a homogeneous ideal.

As one can readily check, J4 = (61,...,04) and A/Jq = k[t1,...,1p].



