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Preface

The monograph focuses on an estimation of the quality of the re-
sults/outputs produced by an algorithm in scientific and engineering
computation. In addition the cost to produce such results by the algo-
rithm is also estimated. The former estimation refers to error compu-
tation while the later estimation refers to complexity computation. It
is mainly intended for the graduate in engineering, computer science,
and mathematics. It can also be used for the undergraduate by select-
ing topics pertinent to a given curriculum. To gain practical experi-
ence, any such course should be supplemented with laboratory work..
Besides, it would be of value as a reference to anyone engaged in nu-
merical computation with a high-speed digital computer.

If we have to compare two or more algorithms to solve a particular
type of problems, we need both error -and complexity estimation for
each of the algorithms. Whenever we solve a problem and produce a
result, we would always like to know error in the result and the
amount of computation and that of storage, i.e., computational com-
plexity and space complexity. The monograph is precisely an exposi-
tion of both error and complexity over different types of algorithms
including exponential/combinatorial ones.

Chapter 1 is introductory. It discusses the distinction between sci-
ence and engineering, highlights the limitation of computation, tools
and types of computation, algorithms and complexity, models of com-
putation, computer-representable numbers, and stages of problem-
solving.

Chapter 2 is an exposition of all that is connected with error.
Precisely what error is, why we get error, and how we estimate the
error constitute the core of this chapter. Similarly, Chapter 3 explains
what, why, and how of complexity of algorithms including various
types of complexity.

v



vi PREFACE

Errors and approximations in digital computers constitute Chap-
ter 4. The details of IEEE 754 arithmetic are also included in this
chapter. Chapter 5, on the other hand, presents several numerical
algorithms and the associated error and complexity.

Error in error-free computation as well as that in parallel and
probabilistic computations are described in Chapter 6. The confidence
level which is never 100% in probabilistic computations is stressed in
this chapter.

Simple examples have been included throughout the monograph to
illustrate the underlying ideas of the concerned topics. Sufficient ref-
erences have been included in each chapter.

Certainly a monograph of this type cannot be written without de-
riving many valuable ideas from several sources. We express our in-
debtedness to all the authors, too numerous to acknowledge individu-
ally, from whose specialized knowledge we have benefited.

V. Lakshmikantham
S.K. Sen
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Chapter 1

Introduction

1.1 Science versus engineering

The Collins Gem dictionary meaning of science is the systematic study of
natural or physical phenomena while that of engineering is the profession of
applying scientific principles to the design and construction of engines, cars,
buildings, or machines. All the laws of physics such as the Newton’s laws of
motion, the first and second laws of thermodynamics, Stokes law, all the
theorems in mathematics such as the binomial theorem, Pythagoras theorem,
fundamental theorem of linear algebra, fundamental theorem of linear
programming, all the laws, rules, and properties in chemistry as well as in
biology come under science. In engineering, on the other hand, we make use
or apply these rules, laws, properties of science to achieve/solve specified
physical problems including real-world implementation of the solution.

To stress the difference between science and engineering, consider the
problem: Compute f(x) = (xz— 4)/(x —2) at x = 2. In engineering/technology,
the answer is 4. This is obtained just by taking the left-hand limit as well as
the right-hand limit and observing that these are equal. A simpler numerical
way to obtain the value of f(x) at x = 2 in engineering is to compute f(x) at x
= 1.99, 2.01. 1.999, 2.001, 1.9999, 2.0001, and observe that these values
increasingly become closer to 4. We have assumed in the previous
computation sufticiently large, say 14 digit, precision. In fact, the value of
f(x)atx =2 + 107 as well as at x = 2 — 107" will each be extremely close
to 4. By any measuring/computing device in engineering, we will get f(x) as
4 although exactly at the point x = 2, f(x) is not defined. In
science/mathematics, the solution of the problem will be output as undefined
(0/0 form).

The function y(x) = |x| is 0 at x = 0. The left-hand limit, the right-hand
limit, and the value of the function at x = 0 are all the same. Hence y(x) is

|
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continuous at x = 0. The first derivative of y(x) at x = 0 does not exist as the
right-hand derivative
¥ (0) = limy o (y(0 + h) = y(0))/h = +1

while the left-hand derivative
y’( (0) = lim|H(,, (y(() + h) _ y(o))/«h S

and both are different. In engineering/technology, we would say “v70) does
not exist”. In science/mathematics, the most precise answer will be “v’. (0)
exists and is +1 while v’ (0) exists and is —1 and v’ (0) =y’ (0)". One might
say that this answer implies “the derivative y’(0) does not exist™. Strictly
speaking, the implication may not tell us the fact that the left-hand derivative
does certainly exist as well as the right-hand derivative also does exist. For
the sake of preciseness, we, however, still prefer to distinguish these
answers.

Consider yet another problem: Compute g(x) = (\/(sinzx))/x at x = 0. In
engineering/technology. the answer is “g(0) does not exist at x = ”. This is
obtained by taking the left-hand limit.and the right-hand limit and observing
that these limist are not equal. One is —I while the other is +1. A simpler
numerical way to obtain the value of g(x) at x = 0 in engineering is to
compute g(x) at x = —.001, +.001, —.0001, +.0001, —.00001, +.00001 and
observe that these values will alternately tend to —1 and +1. The solution of
the problem in science could be output as undefined (0/0 form). However, if
we pose the problem as “Compute g(x) = lim, _, ¢ \/(sin:x)/x" then in
engineering the answer will be “the limit does not exist”. In science, the
precise answer will be “the left-hand limit exists and it is —1; the right-hand
limit exists and it is +1; both are different”. In fact, the answer in
engineering, viz., “the limit does not exist” may not reveal the fact that the
left-hand limit exists, so does the right-hand limit. All these are essentially
subtle differences. A clear conceptual understanding of these differences
does help us in a given context.

From the computation point of view, we will not distinguish between
science and engineering computations although we might keep in mind the
context while performing computations. However, the precision of
computation in science may be significantly more than that in engineering.
In fact, in engineering/technology, a relative error (lack of accuracy) less
than 0.005% is not, in general. required as it is not implementable in the real
world situation and it is hard to find a measuring device which gives
accuracy more than 0.005%. We will discuss this accuracy aspect further
later in this book.



I. INTRODUCTION

1.2 Capability and limit of computation

One common feature that pervades both science and engineering is
computation. The term computation is used here in the context of a digital
computer in a broader sense, viz., in the sense of data/information processing
that includes arithmetic and nonarithmetic operations as well as data
communication as discussed in Section 1.3. In fact, anything that is done by
a computer/computing system is computation. While mathematical quantities
may not satisfy a scientist/an engineer, the numerical quantities do. A
conceptual clarity and quantitative feeling are improved through
computation. Till mid-twentieth century, we had computational power next
to nothing compared to to-day’s (beginning of twenty-first century’s) power.
To-day tera-flops (10" floating-point operations per second) is a reality and
we are talking of peta-flops (10" floating-point operations per second). In
fact. the silicon technology on which the digital computers are based is still
going unparallely strong. Every 18 months the processing power is doubled,
every twelve months the data-communication band-width is doubled while
every nine months the disk storage capacity is doubled. The other
technologies which might lead to quantum computers or protein-based
computers are not only in their infancy but also are not yet commercially
promising. These do have some excellent theoretical properties as well as
severe bottle-necks.

Capability of computation An important need for computational power is
storage/memory. For higher computational power, larger memory is needed
since a smaller memory could be a bottle-neck. A rough chart representing
storage capacity (bits) versus computational power (bits per second) in both
biological computers (living beings including animals) and non-biological
(non-living) machines could be as given in Table 1.

Among living computers, the first (topmost) place goes to the whale
having a huge memory capacity of 10'® bits and a processing speed of 10"
bits/sec while among nonliving computers it is the supercomputer (2003)
with 10" bits of storage and 10" bits/sec of processing speed in the top
position. The British library has 10" bits of information but the processing
capability is of order 1, i.e., practically nil. The supercomputing power and
storage capacity is dynamic in the sense these are increasing with time while
the living computer’s power and storage capacity is possibly not that
dynamic. It is not seriously possible to distinguish between the nineteenth
century human beings and twenty-first century human beings in terms of
their memory capability and processing power.

Limit of computation Can we go on doubling the processing power
indefinitely? Is there a limit for this power? The answers to these questions
are “no” and “yes”, respectively. Our demand for higher computational
speed as well as storage knows no bound. There are problems, say those in

(%)
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weather forecast, VLSI design, that would take over 1500 hours on today’s
(2003) supercomputers to be solved. A computer in early 1980s was
considered the supermachine if it was capable of executing over 100 million
floating point operations per second (> 100 Mflops) with word length of 64
bits and main memory capacity of over 100 million words. Today (2003) it is
called a supermachine if it can execute over 1 billion flops (> 1 Gflops) with
the same word-length of 64 bits and main memory capacity of over 256
million words. Thus the definition of supercomputers is time-dependent, i.e..
yesterday’s supercomputers are today’s ordinary computers.

Table I Memory capacity and computational power of computers

Computers Storage capacity Computational power
(Living/nonliving) (number of bits) (number of bits/sec)
Abacus 10" 10°
Radio channel 10 10’
Television channel 10 10°
Viral DNA 10° 10"
Hand calculator 10° 10°
Smart missile 10° 10°
Bacterial DNA 10° 10"
Bacterial reproduction 10° 10°
Personal computer 10° 10°
Main frame computer 10 10
(1980s)

Human DNA 10 10"
Honey bee 10° 10°*
Rat/mouse 10° 10"
Telephone system 10" 10"
English dictionary 10" 10°
Video recorder 10" 10°
Cray supercomputer 10" 10"
(1985)

Human visual system 10" 10"
Supercomputer (2003) 10" 10"
Elephant 10" 10"
Human being 10" 10"
British library 10° 10"
Whale 10" 10"

To discuss about the limit of computation, we should keep the following
facts (Alam and Sen 1996) in mind:
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1. INTRODUCTION

. Classical Von Neumann architecture in which all instructions are

executed sequentially has influenced programmers to think

sequentially.

Programming is affected by both the technology and the architecture

which are interrelated.

Physics rather than technology and architecture sets up the obstacles

(barriers)/ limits to increase the computational power arbitrarily:

(i) Speed of light barrier: Electrical signals (pulses) cannot
propagate faster than the speed of light. A random access
memory used to 10” cycles per second (1 GHtz) will deliver
information/data at 0.1 nanosecond (0.1 x 107~ second) speed if
it has a diameter of 3 cm since in 0.1 nanosecond, light travels 3
cm.

(ii)  Thermal efficiency barrier The entropy of the system increases
whenever there is information processing. Hence the amount of
heat that is absorbed is kT log.2 per bit, where k is the
Boltzmann constant (1.38 x 107'® erg per degree) and T is the
absolute temperature (taken as room temperature, i.e., 300). It is
not possible to economize any further on this. If we want to
process 10™ bits per second, the amount of power that we
require is 10°° x 1.38 x 107'° x 300 x 0.6931 / 10" = 2.8697 x
107 watts, where 107 erg/sec = | watt.

(iii) Quantum barrier Associated with every moving particle is a
wave which is quantified such that the energy of one quantum E
= hv, where v = frequency of the wave and h = Plank’s constant.
The maximum frequency Vi = mc?/h, where m = mass of the
system and ¢ = velocity of light. Thus the frequency band that
can be used for signaling is limited to the maximum frequency
Vmax. From Shannon’s information theory, the rate of
information (number of information that can be processed per
second) cannot exceed v,,,. The mass of hydrogen atom is 1.67
% 1077 gm. ¢ = 3 x 10" cm/sec, h = 6 x 107", Hence per mass
of hydrogen atom, maximum 1.67 x 107" x 3% x 10™/ (6 x
10%7) = 2.5050 x 10 bits/sec can be transmitted. The number
of protons in the universe is estimated to be around 10”. Hence
if the whole universe is dedicated to information processing, i.e.,
if all the 107 protons are employed to information processing
simultaneously (parallely) then no more than 2.5050 x 10
bits/sec or 7.8996 x 10" bits per year can be processed. This is
the theoretical limitation (for massively parallel processing) set
by the laws of physics and we are nowhere near it! A single
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processor (proton) can process only 2.5 x 10* bits per second or
7.9 x 10" bits per year and no more!

1.3 What is computation in science and engineering

The word computation conjures up an image of performing arithmetic
operations such as add, subtract, multiply, and divide operations on numbers.
Undoubtedly these four basic arithmetic operations as well as other
operations such as a square-rooting (which involves an infinite sequence of
four basic arithmetic operations, in general) do come under computation.
Here by computation we would imply a much more general (broader)
activity, viz., data (or information or knowledge) processing including
data/control signal communication using a digital computer — conventional
as well as intelligent. Each and every machine language instruction that a
hardware computer executes constitutes a unit of computation. The add. the
subtract, the multiply, and the divide instructions, the unconditional and
conditional jump/branch instructions, the for, while, repeat-until instructions,
read, write/print instructions form the building blocks of computation. Each
block consists of an ordered sequence of machine instructions. The other
instructions such as square-rooting (sqst), sine (sin), cosine (cos). tangent
(tan), cotangent (cot) computation can be considered higher (macro) level
building blocks of computation. One may develop still higher level building
blocks such as inverting a matrix, drawing a least-squares curve which can
be found in MATLAB commands/instructions. Basically, a computer
accepts only two distinct symbols, viz., 0 and | and operates/manipulates on
these symbols in fixed or variable sequences and produces only sequences
consisting of these two symbols, viz., 0 and | as outputs interpreted
according to an appropriate format and context.

Although we talked about computation in a broader sense, we will limit
ourselves with the order of dominant operations for the sake of error and
computational complexity'.

'A complex problem or a complex computation implies that the problem/computation is made
up of parts: also it implies that it is complicated. The larger the number of parts of the
problem/computation is. the more complex it is. For a human being — a living computer — the
later implication is often more understood than the former one although psychologically the
former implication also would accentuate the difficulty in terms of grasping/remembering. For a
nonliving machine — a digital computer — there is absolutely no problem of
grasping/remembering or that of case or difficulty: an analogue of former implication. viz.. the
number of instructions, measured as amount of computation. is the complexity,
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1.4 Tools for Computation

During the pre-computer days, we have been using (i) some kind of writing
media such as palm leaves. slates, stone walls/slabs, mud/earth, appropriate
materials (plaster of paris), paper and (ii) some kind of writing tools such as
ink-pot (ink made of a mixture of powered charcoal and water or liquid
colour extracted from plants and/or trees) and pen (pen made of 5 to 6 inches
long sharpened bamboo branch or peacock feather or some other stick/brush
or some sharp hard object or ball-point pen or fountain pen) combination for
doing arithmetic computation as well as graphs, drawings, images/statues —
both two dimensional and three dimensional.

During the modern computer days (late twentieth and twenty-first
centuries), we use computers as another aid like paper-and-pencil but with
much more revolutionary impact on us. If we are asked to compute the
positive square-root of a number, say, 30 we could do it over a longer time
with or without mistake using paper and pencil provided we know the
deterministic arithmetic algorithm for square-rooting. The alternative way is
to take out the pocket calculator — programmable or non-programmable —
and instantly find the square-root of the number mistakeless (not errorless, in
general) by pressing the two number keys 3 and 0 and the square-root
operation key. It may be seen that the probability of modern computers
committing mistakes in executing an instruction is practically nil while that
of any living being — superhuman being or animal or common human being
— committing mistake is certainly not nil> However, computers during
1950’s and early 1960°’s did produce: wrong output due to circuit
failure/malfunction without giving any warning/indication of mistake to us.
For example URAL, a Russian computer, that worked with a number system
in base 8 during late 1950s/early 1960s did produce occasionally wrong
results. A British computer HEC 2M that we had used during late 1950s and
early 1960s was relatively good but still not 100% mistakeless. Thus our

: During one afternoon in carly 1970s. we have seen in Indian Institute of Science. Bangalore,
India Ms. Sakuntala Devi. a human computer, telling too fast the numerical value of a very long
arithmetic expression consisting of terms like (-72.345)"®"" and running from the top corner of
a black board to the bottom corner (writing took more than 5 minutes). She took mainly the time
to read the expression sequentially and told the answer which was incorrect but within another
couple of seconds she told the answer correctly (as computed by the then IBM 360/44
computer! This is not a magic as she has demonstrated this superhuman faculty time and again
in various environments/forum. Even a person like her could commit mistakes. How she does
this is not known to us nor is it possibly known to her or she is not able to communicate all that
goes in her brain.



