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Preface

The discovery of surface-enhanced Raman scattering (SERS) stretches back to the 1970s.
It flourished for nearly four decades with a broad range of applications. Today, it is a vibrant
quintessential embodiment of nanoscience and nanotechnology. SERS is a plasmon-based
spectroscopy at the forefront of the developments in plasmonics, providing the fundamen-
tals for theory and experiment.

SERS continues to grow with remarkable success. There are some major driving forces
pushing forward new developments, among them it is worth mentioning three thriving
areas. First is the success of single molecule detection by SERS; second the progress in
the understanding of SERS fundamentals; and third, the development of nanoscience and
nanotechnology. The level of understanding of SERS is currently so advanced that people
are beginning to formulate strategies for exploiting SERS as a general platform for chemi-
cal and biological analysis with unprecedented routine levels of sensitivity, specificity and
reproducibility.

This book is closely related to one of the symposia in Pacifichem 2010 “Frontiers of
Surface-Enhanced Raman Scattering: Single-Nanoparticles and Single Cells”. Thus, the
collection is based on the Pacifichem SERS, and most of the contributors have been selected
from invited speakers at the symposium. One of the most important purposes of the book
is an attempt to convey to the scientific community the enthusiastic discussion on the state-
of-the-art SERS during the symposium.

The symposium was, in essence, the first gathering so far convened to examine the “State
of the new developments in SERS” with particular emphasis on single nanoparticles and
single cells. With that in mind, in this book we have assembled the prime movers in the
field worldwide, ensuring that we invited the seminal current contributors to SERS theory,
substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing, and
of course fundamental innovation through experimentation.

We hope this book will not only be useful but also enjoyable to read. We will be most
gratified if the book can inspire readers to try novel and exciting SERS research.

Yukihiro Ozaki,
School of Science and Technology,
Kwansei Gakuin University

Katrin Kneipp,
Department of Physics,
Technical University of Denmark

Ricardo Aroca,
Materials and Surface Science Group,
University of Windsor
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1

Calculation of Surface-Enhanced
Raman Spectra Including
Orientational and Stokes Effects Using
TDDFT/Mie Theory QM/ED Method

George C. Schatz and Nicholas A. Valley
Chemistry Department, Northwestern University, USA

New models combining a quantum mechanical description of a molecular system and an
electrodynamics (ED) description of a metal nanoparticle to determine surface-enhanced
Raman spectra are described. The models considered involve inclusion of frequency
dependence, Stokes shifts, and the effects of surface averaging into previously developed
models. Important changes in absolute intensities result from considering these effects
while changes in the relative intensities are minor. In a study of metal phthalocyanine,
strong variation in the spectrum with orientation of the molecule relative to the nanoparticle
surface is noted, and only after orientation averaging is included is there agreement with
experiment. We also present calculations with one of the models using a multi-nanoparticle
system, and this is found to provide more experimentally realistic enhancements which
slightly improve the spectra.

1.1 Introduction: Combined Quantum Mechanics/
Electrodynamics Methods

The surface-enhanced Raman scattering (SERS) response spans multiple orders of
magnitude, providing many important challenges to theoretical modeling. Theoretical

Frontiers of Surface-Enhanced Raman Scattering: Single Nanoparticles and Single Cells, First Edition.
Edited by Yukihiro Ozaki, Katrin Kneipp and Ricardo Aroca.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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and computational studies have approached this problem in a variety of ways [1-8].
Proper modeling of the full SERS effect must describe both the electromagnetic (EM)
enhancement due to the plasmonic particle, and chemical (CHEM) enhancements involv-
ing response of the molecule that interacts chemically with the particle. EM enhancement
results from oscillation of the conduction band electrons of the metallic structure, referred
to as plasmon excitation, in response to an external field. The plasmon excitation enhances
the local electric field at both the incident and scattered frequencies, greatly increasing the
Raman cross-section of molecules close to the nanoparticle surface. CHEM enhancement
is tied to charge transfer between molecule and metal particle, both in the ground and
excited states, that results from orbital overlap. Generally, the EM enhancement is large
compared to the CHEM enhancement [9], with up to a fourth-power dependence on the
electric field (i.e., enhancement ~ E%).

Theoretical modeling of SERS has historically taken one of two paths. One neglects
CHEM effects, focusing only on the dominant EM enhancement as determined by the field
induced at the position of the molecule by light interacting with the nanoparticle [3]. In the
other, the focus can be placed on the CHEM enhancement by doing an electronic structure
calculation for the molecule plus a small cluster of metal atoms [4]. To incorporate both
mechanisms, it is necessary to combine ED and quantum mechanics (QM) calculations
into the optical response, however, this idea has only recently been considered.

Previous work on combining QM and ED has considered the ED calculations for the par-
ticle in the absence of the analyte and then the plasmonic excitation is applied as a constant
field to the molecule. Corni and Tomasi explicitly coupled electronic structure calculations
for the analyte to an ED calculation for the particle in the frequency domain by includ-
ing effective charges in the molecular Hamiltonian in the quasi-static approximation [10].
Lopata and Neuhauser developed a local, two-level random phase approximation model for
density matrix evolution. This evaluated the molecular population transfer rate while the
finite-difference time-domain (FDTD) method was used to describe the ED [11]. Masiello
and Schatz applied a many body Greens function to evaluate plasmon-enhanced molecular
absorption [12]. This enables a better treatment of the effect of the molecule—field interac-
tion, but CHEM effects associated with charge transfer were not included in the applica-
tions. A discrete interaction model/QM method to explicitly model nanoparticle interaction
has been described by Morton and Jensen [13, 14]. Here an atomistic representation of
the nanoparticle (with atoms treated as polarizable dipoles) provides an explicit model for
the optical properties of a molecule interacting with the nanoparticle surface. Recently,
Chen and Schatz described a hybrid QM/ED method in the time domain using RT-TDDFT
(real-time time-dependent density functional theory) in which fields from FDTD are used
to provide a plasmon-enhanced driving field for the molecule [15]. More recently, a fre-
quency domain linear response version of this theory has been developed by Mullin and
Schatz [16] and applied to calculating SERS spectra for pyridine and Rhodamine 6G. In
both studies TDDFT was used to determine frequency-dependent polarizability derivatives
for the molecule, with the molecule taken to be in the gas-phase except with a restricted
orientation that mimics the molecule on the surface. This approach for the coupling of QM
with ED is denoted “model G”.

New multiscale models have recently been developed for the combination of QM and
classical ED for describing surface-enhanced Raman and hyper-Raman spectra including
CHEM and EM enhancement mechanisms for both [16]. In these models, TDDFT (in the
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frequency domain) is used for the QM calculation, and Mie theory (restricted to spherical
particles) is used for the ED calculations. A new feature, however, is that the surface of a
metal cluster treated quantum mechanically is overlaid with the surface of the metal parti-
cle to combine the two calculations. In model A, the electric field from plasmon excitation
of the metal particle is combined with the CHEM enhancement associated with a static
treatment of the molecule-metal structure to determine overall spectra. In model B, the fre-
quency dependence of the Raman spectrum of the isolated molecule is combined with the
enhancements determined using model A to refine the enhancement estimate and include
resonance Raman effects in the molecule.

Models A, B, and G all neglect the Stokes shifting of the scattered light and use a three
point approximation to determine the average over positions of the molecule on the surface.
To more faithfully describe Raman scattering, in this paper we present improved models that
couple QM calculations and ED calculations to include both EM and CHEM mechanisms,
and which remove the previous limitations. In particular, model A has been modified to
include Stokes shifting in the EM enhancement, replacing | E(w)|* by | E(w)E(w')|*> where @
and o’ are the incident and Stokes shifted frequencies, respectively. This leads to model S,
and we show how this effect changes both the magnitude and the shape of the Raman
spectrum for pyridine. Further modifications to model S to include more extensive surface
averaging leads to model V. Comparisons with experiment for metal phthalocyanines and for
pyridine demonstrate important improvements in the predictions of these models compared
to earlier work. We also show how the EM mechanism can be evaluated for our models for
nanoparticle dimers, using Mie theory, leading to much higher enhancement values.

1.2 Computational Details

The calculation of the field for spheres is performed with a locally developed Mie theory
code. The silver dielectric parameters used are those from Johnson and Christy [17]. For
small particles, electron scattering from the nanoparticle surface becomes an important
source of electron dephasing. A factor Avg/R in the Drude expression for the plasmon width,
where vy is the Fermi velocity, R is the particle radius, and A is an empirical parameter, is
included to correct for this. A value of 0.1 for A will be used here.

Quantum mechanical calculations have been performed using the Amsterdam Density
Functional (ADF) program package [18]. For systems including pyridine, full geometry
optimization and frequency calculations were completed using the Perdew —Wang (PW91)
XC-potential and a triple-{ polarized Slater type (TZP) basis set. All calculations for
phthalocyanines were performed with a Becke—Perdew (BP86) XC-potential and a TZP
basis set.

Polarizabilities for pyridine were calculated with the AOResponse module, and the
asymptotically correct statistical average of orbital potential (SAOP) model XC-potential.
The SAOP model potential has been designed to give accurate excited state properties,
allowing accurate calculation of response properties. An even-tempered quadruple-¢ plus
triple polarization (ET-QZ3P) polar basis set was used for C, H, and N, while a TZP basis
set was used for Ag. Scalar relativistic effects for the Ag atoms were accounted for with
the zeroth order regular approximation (ZORA). Frequency-dependent polarizabilities
were calculated using a global damping parameter of I' = 0.004 au (0.1eV); this is the



