NUMERICAL WETHODS N
APPLIED SCIENCES

Wei Cai Zhongci Shi
Chiwang Shu Jinchao Xu

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

275139890

Numerical Methods in Applied Sciences

Edited by

Wei Cai Zhongci Shi
Chiwang Shu Jinchao Xu

E9761980

il SCIENCE PRESS
NEW YORK, BEIJING

Responsible Editor: Lin Peng

Published by .
Science Press New York, Ltd. & J
84-04 58th Ave .
Elmhurst, NY 11373

USA

ISBN 1-880132-15-x (New York)
ISBN 7-03-005152-1 (Beijing)

All Right Reserved

© 1996 by Science Press New York, Ltd.

No part of the material protected by this copyright notice may be reproduced or
utilized any form or by any means, electronic or mechanical, including photo-
copying, recording, or by any information storage and retrieval system, without
written permission from copyright owners.

Printed in USA

%

PEBZBRE R E S K AR

Numerical Methods in Applied Sciences

Preface

This monograph is composed of fifteen solicited and peer-reviewed articles for an
verview of theoretical and algorithmic developments of selectedactive research areas in
numerical analysis and computational sciences.

The authors of these articles are all overseas Chinese researchers.The book is a result of
our strong desire to contribute our knowledge to the advancement of scientific and
technological development in our motherland. We believe, in this information era, that
scientific prominence in China relies to a large extent on researchers having the most
current developments in the world accessible to them. By exposing our counterpart
colleagues and especially graduate students in China to some of the most updated
research materials, we hope that this book will provide one of the many avenues in
providing the aforementioned accessibility.

With the ever increasing importance of computers' role in scientific research and
industrial applications, a tremendous amount of research has been done in recent years
for the development of faster and more efficient numerical algorithms for modern high
performance computers. The goal of this book is to identify and give a bird eye view
of some of the most active areas in these research activities. Because of the limitation
of our time, resources and also the size of the book, there are perhaps additional
important subjects in this area that have not been addressed in this book. Most of the
papers are written mainly based on the authors' own research experiences but with
efforts to point out to the readers the developments in other related research directions.
We hope this book will be a useful research and teaching reference for graduate
students and researchers in applied mathematics, engineering and any other
computationally related disciplines.

We would like to thank all the authors for their contributions to this volume and
especially the many anonymous reviewers for their expertise which has improved the
quality of this book.

Wei Cai
Zhong-Ci Shi
Chi-Wang Shu
Jinchao Xu

July, 1995

Contributors

Zhaojun Bai
Department of Mathematics, University of Kentucky, Lexington, KY 40506

Gang Bao
Department of Mathematics, University of Florida, 201 Walker Hall, Gainesville,
FL 32611

Wei Cai
Department of Mathematics, University of California, Santa Barbara, CA 93106

Qiang Du
Department of Mathematics, Michigan State University, East Lansing, MI 438824

Weinan E
Courant Institute of Mathematical Sciences, New York , 251 Mercer Street,
New York, NY 10012

Zhong Ge
The Fields Institute for Research in Mathematical Sciences, 185 Columbia St. West,
Waterloo, Ontario N2L 5Z5, Canada

Ming Gu
Department of Mathematics and Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720

Thomas Yizhao Hou
Applied Mathematics, 217-50, California Institute of Technology, Pasadena, CA 91125

Jian-Guo Liu
Department of Mathematics, Temple University, Philadelphia, PA 19122

Ling Ma
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213

Chi-Wang Shu
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Junping Wang
Department of Mathematics, University of Wyoming, Laramie, WY 82071

Jinchao Xu
Department of Mathematics, Penn State University, University Park, PA 16802

Yinyu Ye
Department of Management Sciences, The University of Iowa, lowa City, IA 52242

Hongyuan Zha
Department of Computer Science and Engineering, Penn State University,
University Park, PA 16802

Zhiming Zhang
Department of Mathematics, Texas Tech University, Lubbock, TX 79409

Table of Contents

Parallel Matrix Computations

ZRAOJUN BQiocooovivieiieieieseieeeeeeeeee e

Inverse Problems in Partial Differential Equations

GANG BAO ...

Spectral and Multiresolution Methods for PDE's

A 07 1

Computational Methods for the Time Dependent Ginzburg-Landau
Models of Superconductivity

Oiane Dt . conmessss smpsmmmmmmmesssssmssss e ovmsavsosums s

Projection Method for Viscous Incompressible Flows

Weinan E and Jian-guo Liucoceveervevueennnn...

Symplectic Integrators for Hamiltonian Systems

ZIONG G ..

Fast Algorithms in Large-Scale Scientific Computing
MiNG GU oo

Vortex Methods for Incompressible Flows
Thomas YizhAo HOUcooeeeeeeircuiiveiiniiiiinins e 129

Numerical Methods for Nonconvex Variational Principles
in Material Sciences
571 | - PP ———— 155

On Finite Difference and Finite Element Shock Capturing Methods
for Conservation Laws
Chi-Wang SHE cossessssssissssussssssassmmmsmsmasmsmesm s 169

Mixed Finite Element Methods
JURGING WARE .oiissosmmarsoisrissis o sisomnamse@smmssesssmsssnsmstss 188

Multigrid and Domain Decomposition Methods
TBCRAE XU cnessssopernovseocissimsensineiamaemasn bt s 215

Progress in Linear Programming: Interior-Point Algorithms
VI @ ousoversmmmmsamsmnsssivopssnsmssnssivsnastsnmmmnnnns sisiors 003 237

The SVD and Some Related Decompositions
in Numerical Linear Algebra
HONeHan ZHE v s mmsssssmenssssmmsnssssms smonsns 260

Finite Element Methods for Solid Mechanics
ZHIIIRE ZHABY v oscvevwes vevvsvesmmsssntssivssmssmsssssmsissisns sasssmmion 278

Parallel Matrix Computations

ZHAOJUN BAI

ABSTRACT. With the increasing availability and usage of advanced-architecture
computers, parallel matrix computations is an exceedingly active research and
development field. Matrix computations lie at the heart of many scientific
computing problems. New architectures impact all traditional goals of algo-
rithm design and analysis and software development for matrix computation
problems. In this paper, we give a snapshot of the recent development of
parallel matrix computations. We discuss the main features of today’s high
performance computer systems which impact the parallel algorithm and soft-
ware design and development. We describe the recent development of high
performance libraries, templates and toolboxes for the most common linear
algebra problems. We use divide and conquer type algorithms for eigenvalue
problems as examples to show that software development is an excellent way
to stimulate research.

1. Introduction

High performance parallel computing capability offers the promise of great ad-
vances in the design of high speed civil transport, rational drug design, semiconduc-
tor device and process simulation, global climate modeling, and other applications
[38]. The increasing availability of advanced-architecture computers is having a
very significant impact on all spheres of scientific computation. Linear algebra
and matrix computation problems lie at the heart of most scientific computing.
Reliable, efficient, portable and ease-of-use matrix computation algorithms and
software provide an infrastructure to satisfy the needs of computational scientists
and engineers. In this paper, we will review some recent development of parallel
algorithms and software for the most common problems in numerical linear alge-
bra (matrix computations). Particular emphasis is placed on the development of

1991 Mathematics Subject Classification. Primary 65F15, 65F10.
The author was supported in part by NSF grant ASC-9102963 and in part by ARPA grant
DM28E04120 via a subcontract from Argonne National Laboratory.

2 ZHAOJUN BAI

algorithms and software packages which are available in the public domain.

We begin with a brief outline of the main features of today’s high performance
computer systems, general principles in parallel algorithm design, and tradeoffs
in parallel algorithm and software development. Then, we give a brief descrip-
tion of the linear algebra libraries, such as EISPACK, LINPACK and LAPACK,
followed by ScaLAPACK, which is currently under development. The motivation
and importance of the development of LAPACK and ScaLAPACK for high per-
formance computer systems are stressed. The main design strategies of these high
performance linear algebra packages are outlined.

It is quite difficult to accommodate all mathematical software users with the
same sequential software, and this problem is exacerbated on parallel machines
because of the heightened need for performance tuning and larger variety of data
layouts. In section 4, we will discuss the development of the templates and toolbozes
around the sparse matrix computations. These templates and toolboxes can easily
be assembled to adapt to a particular machine and particular application.

Underlying all these developments is the design and analysis of numerical algo-
rithms. Although the purpose of a software development project is, aside from the
production of the package itself, to investigate the problems involved in the devel-
opment of high quality mathematical software, a lot of interesting and challenging
research problems have emerged. In [66, 17], Stewart and Demmel have proposed
a number of open problems with respect to the development of LINPACK and
LAPACK. In section 5, we will use divide and conquer type algorithms for eigen-
value problems as examples to show that software development is an excellent way
to stimulate research.

This review is by no means an exhaustive presentation. The author will focus on
those developments with which he is involved and familiar. It is evidently biased
by the prejudices of the author and his ignorance of many areas of an ever growing
literature. The reader might consult some other recent survey papers, such as [31]
and [19], where a bibliography of over two thousands entries is included.

2. High Performance Computer Systems

Flynn’s classification of parallel computational models, the one widely used
today, views the conventional serial computation model (von Neumann model) as
a Single stream of Instruction controlling a Single stream of Data (SISD). One can
take one step toward parallelism by introducing Multiple Data streams (SIMD)
and a second step by adding Multiple Instruction steams (MIMD).

Thinking Machine’s CM-2 and MasPar’s MP-2 are the examples of SIMD ma-

PARALLEL MATRIX COMPUTATIONS 3

Network

Network

© O -0 bbb

FIGURE 1. MIMD parallel architectures: shared memory (LEFT)
and distributed memory (RIGHT)

chine. In general, SIMD machines are particularly suited to special purpose com-
puting.

In the MIMD parallel computational model, as shown in Figure 1, there are two
ways to arrange the processing elements (P) and memory modules (M). The con-
figuration with a shared memory model of computation is that every processing
element has equal access to all memory. In the distributed memory configura-
tion, the processing elements each have their own memory and communicate by
“message-passing”. A shared memory MIMD machine hides the interconnection
from users and is ease-of-use. However, it is limited by the number of processor
elements allowed. Cray Y-MP and C-90, IBM 3090 and 9000, and Convex C-series
are shared memory machines. The Intel Paragon and Thinking Machines’ CM-5
and the more recently announced IBM SP1 and Cray T3D are distributed memory
concurrent supercomputers.

All machines, even desktop PCs and workstations, have memory hierarchies,
from fast and small registers, to caches, then to slower and larger main memory.
For distributed memory machines, the memory hierarchy also includes the off-
processor memory of the other processors. The amount of time it takes to move
the data from the memory to the operation unit can far exceed the time required
to perform the operation unless the memory is immediately proximate to the
operation unit, such as in a register or cache. The actual performance of a vector
or a scalar floating point unit is often limited by the rate of transfer of data between
different levels of memory in a machine.

The reader is referred to two recent excellent textbooks, [37, 45], on advanced
computer architectures.

An emerging computing platform is to use a set of software which allow a hetero-
geneous collection of computers, such as desktop workstations, hooked together by
a network, to be used as a parallel computer. We may give it the nickname “poor
man’s supercomputer”. A program uses message passing routines to communicate

4 ZHAOJUN BAI

and synchronize with other programs. By sending and receiving messages, multi-
ple processes can cooperate to solve a problem in parallel. PVM (an acronym for
Parallel Virtual Machine) is one of such software products available in the public
domain [34]. PVM was initiated at the Oak Ridge National Laboratory, and is
now an ongoing research project involving a number of academic institutions and
national laboratories and supported by many computer vendors, such as Cray, HP,
IBM and Intel.

2.1. General principles in parallel algorithm design. In a sequential
computation environment, the execution time of an algorithm is basically pro-
portional to the number of floating point operations it performs. What are the
general principles to guide us in design and analysis of parallel algorithms on
advanced-architecture concurrent computers? The answers are the locality and
regularity of operation [19].

Locality refers to the proximity of the arithmetic and storage components of
computers. All machines have a memory hierarchy. Useful arithmetic and logical
operation can occur only on data at the top of the memory hierarchy. It is desirable
to minimize the time spent moving data between levels of the memory hierarchy,
and to use data as much as possible while it is stored in the higher levels of the
memory hierarchy.

Regularity means that the operations (including arithmetic and logical opera-
tions and communication) which parallel machines perform fastest tend to have
simple and regular patterns, such as matrix-matrix multiplication. Efficiency de-
mands that computations be decomposed into repeated applications of these pat-
terns. It is one of the major challenges to design a parallel algorithm which uses a
very high fraction of these regular operations, in addition to maintaining locality.

We should note that there is one factor determining the actual program’s run-
ning time, it is Amdahl’s Law. As Amdahl noted, the computing time can be
divided into the parallel portion and the serial portion. The computation speedup
approaches a constant limit determined by the serial portion, no matter how high
the degree of the parallelism.

2.2. Different user groups and important tradeoffs. With the rapid ad-
vances of computer facilities, in particular, massively parallel computers, and the
new engagement of interdisciplinary scientific computing activities, there are two
different groups of mathematical algorithm and software users according to their
different desired priorities in terms of computation details, reliability and execu-
tion time of a program. The first group is made up of traditional library users and

PARALLEL MATRIX COMPUTATIONS 5

the second group is made up of high performance computing researchers. For the
first group the desiderata can be characterized as follows:
(i) easy user interface with hidden computational details,
(ii) reliability; the code should fail as rarely as possible,
(iii) execution time.
However, for the second group, the desiderata are:
(i) execution time,

(ii) being able to access internal details to fine tune data structures to one’s
applications,

(iii) reliability; a program should expend only a negligible amount of time,
space or code in checking or taking precautions against rare eventualities
that the user knows may never arise for his or her particular applications.

These different desiderata give an extra dimension to numerical algorithm devel-
opment and analysis. To what extent can we satisfy both groups? In this paper,
we will see how to address this interesting question with respect to matrix com-
putations.

To this end, we should note that because of the constraints of locality and
regularity of operations and other factors in parallel computation, certain trade-
offs have to be made in algorithm design and implementation. One such tradeoff
is time versus space. An algorithm which uses less space may have to go more
slowly. Another interesting tradeoff is parallelism versus numerical stability [18].
For some problems, highly parallel algorithms are known to be as less numerically
stable than conventional sequential algorithm. For example, Sameh and Brent’s
algorithm for solving an n x n linear system with a triangular matrix T takes
O(log®n) parallel steps [61]. However, the error analysis of this algorithm shows
an error bound proportional to x*(T')e, where «(T) = ||T|| |T~!|| is the condition
number of T' (note that x(T') > 1), and € is machine precision. This is in con-
trast to the error bound of x(T')e for the usual sequential substitution algorithm.
We will see the same kind of tradeoffs for the different algorithms to solve the
nonsymmetric eigenvalue problem in section 5. This leads us to use the following
simple paradigm for using a highly parallel and occasionally numerically unstable
algorithm:

(i) Solve the problem (quickly).

(if) Test for instability (reliably)

(iii) If the answer is unsatisfactory, recompute the answer using a slower but
more stable algorithm.

This paradigm will be successful if:

6 ZHAOJUN BAI

(i) The fast algorithm is only rarely unstable.
(ii) The instability test is cheap.

3. Dense Linear Algebra Libraries

In this section, we review the development of some important packages of dense
linear algebra software.

3.1. EISPACK and LINPACK. EISPACK [63, 33], released in 1972, is
a collection of Fortran subroutines for solving matrix eigenvalue problems. In
addition, two routines are included to compute the singular value decompositior
and certain least-squares problems. The package is primarily based on a collection
of Algol procedures developed in the 1960s and collected by Wilkinson and Reinsch
[72]. Algorithms were chosen on the basis of their generality, elegance, accuracy,
speed and economy of storage.

LINPACK [20], released in 1979, is a collection of Fortran subroutines that
analyze and solve linear equations and linear least-squares problems. LINPACK is
organized around the four matrix factorizations: LU, Cholesky, QR and singular
value decomposition. The key factors influencing LINPACK’s efficiency are the
use of column-oriented algorithms and Level 1 BLAS (Basic Linear Algebra Sub-
programs) [48]. The column-oriented algorithms increase efficiency by preserving
locality of reference (since Fortran stores arrays in column major order).

The EISPACK and LINPACK software libraries were designed for supercom-
puters used in the 1970s and early 1980s, such as the CDC-7600, Cyber 205 and
Cray 1.

3.2. BLAS and LAPACK. EISPACK and LINPACK have for many years
provided high-quality portable software for linear algebra problems. However, on
modern high performance computers, they often achieve only a small fraction of
the peak performance of a machine. For example, in Table 1, we see that the
performance (measured in megaflops!) of the LINPACK subroutine for computing
the Cholesky factorization of a symmetric positive definite matrix is only at 40% of
the peak performance of a processor element (PE) Cray C-90. When it runs on 16
processors, it is only at 3% of the peak performance. EISPACK and LINPACK are
inefficient because their memory access patterns disregard the multilevel memory

1Megaflops = 108 or millions of floating point operations per second. Gigaflops = 10° or
billions of floating point operations per second. Teraflops = 1012 or trillions of floating point
operations per second. Since the number of floating point operations of an algorithm is fixed,
the higher megaflops rate an algorithm is, the faster it is.

PARALLEL MATRIX COMPUTATIONS 7

TABLE 1. Speed of LINPACK, BLAS and LAPACK on Cray C-90
in Megaflops

[| 1 PE [16 PEs |
Maximum speed 952 | 15238
LINPACK (Cholesky, n=500) 387 479

BLAS 2 (Matrix-vector multiplication) 895 5900
BLAS 3 (Matrix-matrix multiplication) | 898 | 13000
LAPACK (Cholesky, n=500) 785 5700
h LAPACK (Cholesky, n=1000) 854 9800

hierarchies, thereby spending too much time moving data instead of doing useful
floating point operations.

How can we sufficiently control data movement and achieve good vectorization
and parallelism to obtain the levels of performance that those machines can offer?
The answer is through the use of BLAS. BLAS is a key to transportability of the
programs. There are three levels of BLAS:

Level 1 BLAS [48]: for vector-vector operations, such as y « az + y.
Level 2 BLAS [22]: for matrix-vector operations, such as y + adz +
By.
Level 3 BLAS [21]: for matrix-matrix operations, such as C < aAB +
pC,
where A, B and C are matrices, z and y are vectors, and a and [are scalars.

One might well ask why we need to specify the higher level BLAS since they
can obviously be decomposed into lower level simpler operations. The reason
is that higher level BLAS offers much more opportunity to exploit locality and
parallelizability than the lower level BLAS [32]. For example, in Level 2 BLAS,
the number of floating point operations for the operation y + Az + y is 2n2, the
minimum memory references is n2 + 3n and their ratio q is 3. When the data are
too large to fit in the top of the memory hierarchy, we wish to perform the most
flops per memory reference to minimize data movement. In Level 2 BLAS, the
ratio ¢ = 3 gives an upper bound. It can achieve near-peak performance on many
vector processors. For example, on the single processor of Cray C-90, it achieves
94% of the peak performance (see Table 1). However, on the multiprocessors,
the performance is limited by this ratio. On 16 processors of Cray C-90, it only
achieves 38.7%. This limitation can be overcome by Level 3 BLAS. The number

