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Preface

These are notes for a graduate topics course offered on several occasions to a
rather diverse group of doctoral students at Bowling Green State University.
An earlier version of these notes was available through my Web pages for
some time and, judging from the e-mail I’ve received, has found its way into
the hands of more than a few readers around the world. Offering them in their
current form seemed like the natural thing to do.

Although my primary purpose for the course was to train one or two
students to begin doing research in Banach space theory, I felt obliged to
present the material as a series of compartmentalized topics, at least some of
which might appeal to the nonspecialist. I managed to cover enough topics
to suit my purposes and, in the end, assembled a reasonable survey of at least
the rudimentary tricks of the trade.

As a prerequisite, the students all had a two-semester course in real analy-
sis that included abstract measure theory along with an introduction to func-
tional analysis. While abstract measure theory is only truly needed in the final
chapter, elementary facts from functional analysis, such as the Hahn—Banach
theorem, the Open Mapping theorem, and so on, are needed throughout. Chap-
ter 2, “Preliminaries,” offers a brief summary of several key ideas from func-
tional analysis, but it is far from self-contained. This chapter also features a
large set of exercises I used as the basis for additional review, when necessary.
A modest background in topology is also helpful but, because many of my
students needed review here, I included a brief appendix containing most of
the essential facts.

I make no claims of originality here. In fact, the presentation borrows
heavily from several well-known sources. I tried my best to document these
sources fully in the references and in the brief Notes and Remarks sections at
the end of each chapter. You will also see that I’ve included a few exercises
to accompany each chapter. These only scratch the surface, of course. Ener-
getic readers may want to seek out greater challenges through the readings
suggested in the Notes and Remarks.

X1



xii Preface

My goal was a quick survey of what I perceive to be the major topics in
classical Banach space theory: Basis theory, L, spaces, C(K) spaces, and a
brief introduction to the geometry of Banach spaces. But the emphasis here is
on classical; most of this material is more than thirty years old and, indeed, a
great deal of it is more than fifty years old. Readers interested in contemporary
research topics in Banach space theory are sure to be disappointed with this
modest introduction and are encouraged to look elsewhere.

Finally, I should point out that the course has proven to be of interest
to more students than I had originally imagined. Basis theory, for example,
has enjoyed a resurgence in certain modern arenas, and such chestnuts as
the so-called gliding hump argument frequently resurface in a variety of
contemporary research venues. From this point of view, the course has much
to offer students interested in operator theory, frames and wavelets, and even
in certain corners of algebra such as lattice theory. More important, at least
from my point of view, is that the early history of Banach space theory is
loaded with elegant, insightful arguments and clever techniques that are not
only worthy of study in their own right but are also deserving of greater
publicity. It is in this spirit that I offer these notes.

Neal Carothers
Bowling Green, Ohio
February 2003
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Chapter 1

Classical Banach Spaces

To begin, recall that a Banach space is a complete normed linear space. That
is, a Banach space is a normed vector space (X, || - ||) that is a complete
metric space under the induced metric d(x, y) = ||x — y||. Unless otherwise
specified, we’ll assume that all vector spaces are over R, although, from time
to time, we will have occasion to consider vector spaces over C.

What follows is a list of the classical Banach spaces. Roughly translated,
this means the spaces known to Banach. Once we have these examples out
in the open, we’ll have plenty of time to fill in any unexplained terminology.
For now, just let the words wash over you.

The Sequence Spaces ¢, and ¢

Arguably the first infinite-dimensional Banach spaces to be studied were the

sequence spaces £, and cy. To consolidate notation, we first define the vector

space s of all real sequences x = (x,) and then define various subspaces of s.
Foreach 1 < p < oo, we define

00 1/p
Ixll, = (Z |xn|”)
n=1

and take £, to be the collection of those x € s for which |x|| p» < 0o. The
inequalities of Holder and Minkowski show that £, is a normed space; from
there it’s not hard to see that £, is actually a Banach space.

The space £, is defined in exactly the same way for 0 < p < 1 but, in this
case, || - ||, defines a complete quasi-norm. That is, the triangle inequality now
holds with an extra constant; specifically, [x + y||, < 2'/”(||xll,, + 1Iylly).
It’s worth noting that d(x, y) = ||x — y||§ defines a complete, translation-
invariant metric on £, for0 < p < 1.



2 Classical Banach Spaces

For p = oo, we define £, to be the collection of all bounded sequences;
that is, £, consists of those x € s for which

X lloo = sup |x| < oo.
n

It’s easy to see that convergence in £, is the same as uniform convergence
on N and, hence, that £, is complete. There are two very natural (closed)
subspaces of £.,: The space c, consisting of all convergent sequences, and the
space cg, consisting of all sequences converging to 0. It’s not hard to see that
¢ and ¢y are also Banach spaces.

As subsets of s we have

ElcepceqCC()CCCfoo (1.1)
forany 1 < p < g < oo. Moreover, each of the inclusions is norm one:
el = lxllp, = llxllg = llx oo (1.2)

It’s of some interest here to point out that, although s is not itself a normed
space, itis, at least, a complete metric space under the so-called Fréchet metric

o0

—n |Xn — Ynl
d(x,y)=22 m (1.3)

n=1

Clearly, convergence in the Fréchet metric implies coordinatewise conver-
gence.

Finite-Dimensional Spaces

We will also have occasion to consider the finite-dimensional versions of
the £, spaces. We write £}, to denote R" under the £, norm. That s, £7, is the
space of all sequences x = (xy, ..., x,) of length n and is supplied with the

norm
W 1/p
Ixll, = (Z |x,-|1’>
i=1

for p < 00, and
IXllc = max |x;]
1<i<n

for p = oo.
Recall that all norms on R” are equivalent. In particular, given any norm
| - Il on R", we can find a positive, finite constant C such that

C7'xlly < lIx|l < Clix]l; (1.4)
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for all x = (xy, ..., x,) in R". Thus, convergence in any norm on R” is the
same as “coordinatewise” convergence and, hence, every norm on R” is com-
plete.

Because every finite-dimensional normed space is just “R” in disguise,” it
follows that every finite-dimensional normed space is complete.

The L, Spaces

We first define the vector space L[0, 1] to be the collection of all (equivalence
classes, under equality almost everywhere [a.e.], of) Lebesgue-measurable
functions f : [0, 1] — R. For our purposes, L will serve as the “measurable
analogue” of the sequence space s.

For1 < p < oo, the Banach space L [0, 1] consists of those f € Lo[0, 1]
for which

1 1/p
1l =< i If(x)["dx) < 0.

The space L[0, 1] consists of all (essentially) bounded f € Lo[0, 1] under
the essential supremum norm
Il flloo = ess.sup |fG)l =inf{B :|f| < Bae}
<x<
(in practice, though, we often just write “sup” in place of “ess.sup”). Again,
the inequalities of Holder and Minkowski play an important role here.

As before, the spaces L [0, 1] are also defined for0 < p < 1, but || - ||,
defines only a quasi-norm. Again, d(f, g) = || f — gl|% defines a complete,
translation-invariant metric on L, forO < p < 1. The space Lo[0, 1] is given
the topology of convergence (locally) in measure. For Lebesgue measure on
[0, 1], this topology is known to be equivalent to that given by the metric

N fe) =gl
wro= [ it s

As subsets of Ly[0, 1], we have the following inclusions:

L[0,1] D L,[0, 1] D L4[0, 1] D L[O0, 1], (1.6)

forany 1 < p < g < 0o. Moreover, the inclusion maps are all norm one:

1A =00 < 0Fllg = 1 f lloo- 1.7

The spaces L ,(IR) are defined in much the same way but satisfy no such
inclusion relations. That is, for any p # g, we have L ,(R) ¢ L,(R). Never-
theless, you may find it curious to learn that L ,(R) and L [0, 1] are linearly
isometric.



4 Classical Banach Spaces

More generally, given a measure space (X, X, i), we might consider the
space L ,(u) consisting of all (equivalence classes of) £-measurable functions
f : X — R under the norm

1/p
1£1l, = ( /X If(x)I”du(x))

(with the obvious modification for p = o0).

It is convenient to consider at least one special case here: Given any set I,
wedefine £,(T") = L, (T, 2T, ), where y is counting measure on I'. What this
means is that we identify functions f : I' — R with “sequences” x = (x,)
in the usual way: x,, = f(y), and we define

1/p 1/p
llxll, = (Z Ixy|p) = (/1: If(y)l”du(y)) =11f1p

yel

for p < oco. Please note that if x € £,(I"), then x,, = 0 for all but countably
many y. For p = oo, we set

[Ixlloo = sup |x,| = sup | f()| = || fllco-
yel yel

We also define ¢p(I") to be the space of all those x € £.,(I") for which the set
{y : |x,| > €} is finite for any ¢ > 0. Again, this forces an element of co(I")
to have countable support. Clearly, £,(N) = £, and co(N) = co.

A priori, the Banach space characteristics of L ,(u) will depend on the
underlying measure space (X, X, ). As it happens, though, Lebesgue mea-
sure on [0, 1] and counting measure on N are essentially the only two cases
we have to worry about. It follows from a deep result in abstract measure
theory (Maharam’s theorem [97]) that every complete measure space can be
decomposed into “nonatomic” parts (copies of [0, 1]) and “purely atomic”
parts (counting measure on some discrete space). From a Banach space point
of view, this means that every L, space can be written as a direct sum of
copies of L,[0, 1] and £,(T") (or E;).

For the most part we will divide our efforts here into three avenues of
attack: Those properties of L, spaces that don’t depend on the underlying
measure space, those that are peculiar to L »10, 1], and those that are peculiar
to the £,, spaces.

The C(K) Spaces

Perhaps the earliest known example of a Banach space is the space Cla, b]
of all continuous real-valued functions f : [a, b] — R supplied with the
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“uniform norm”’:
| £l = max | f(2)l.
a<t<b

More generally, if K is any compact Hausdorff space, we write C(K) to
denote the Banach space of all continuous real-valued functions f : K — R
under the norm

1£1 = max | £

For obvious reasons, we sometimes write the norm in C(K) as || f|ls and
refer to it as the “sup norm.” In any case, convergence in C(K) is the same as
uniform convergence on K.

In Banach’s day, point set topology was still very much in its developmental
stages. In his book [6], Banach considered C(K) spaces only in the case of
compact metric spaces K . We, on the other hand, may have occasion to venture
further. At the very least, we will consider the case in which K is a compact
Hausdorff space (since the theory is nearly identical in this case). And, if we
really get ambitious, we may delve into more esoteric settings. For the sake
of future reference, here is a brief summary of the situation.

If X is any topological space, we write C(X) to denote the algebra of all
real-valued continuous functions f : X — R. For general X, though, C(X)
may not be metrizable. If X is Hausdorff and o -compact, say X = |2, K,,
then C(X) is a complete metric space under the topology of “uniform con-
vergence on compacta” (or the “compact-open” topology). This topology is
generated by the so-called Fréchet metric

o If—gln
AW o= 22 T+17 -l L)
where || f||, is the norm of f|g, in C(K,).

If we restrict our attention to the bounded functions in C(X), then we may
at least apply the sup norm; for this reason, we consider instead the Banach
space C,(X) of all bounded, continuous, real-valued functions f : X — R
endowed with the sup norm

£l = sup | f(x)l.

xeX

Obviously, C,(X) is a closed subspace of £,,(X). If X is at least completely
regular, then Cp,(X) contains as much information as C(X) itself in the sense
that the topology on X is completely determined by knowing the bounded,
continuous, real-valued functions on X.
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If X is noncompact, then we might also consider the normed space Cc(X)
of all continuous f : X — R with compact support. That is, f € Cc(X) if
f is continuous and if the support of f, namely, the set

supp f = {x € X : f(x) #0},

is compact. Although we may apply the sup normto C¢(X), it’s not, in general,
complete. The completion of Cc(X) is the space Co(X) consisting of all those
continuous f : X — R that “vanish at infinity.” Specifically, f € Co(X)if f
is continuous and if, for each ¢ > 0, the set {| f| > ¢} has compact closure.
The space Cy(X) is a closed subspace of Cp(X) and hence is a Banach space
under the sup norm.

If X is compact, then, of course, Cc(X) = Cp(X) = C(X). For general X,
however, the best we can say is

Cce(X) C Co(X) C Cp(X) C C(X).

At least one easy example might be enlightening here: Consider the case
X = N; obviously, N is locally compact and metrizable. Now every func-
tion f : N — R is continuous, and any such function can quite plainly be
identified with a sequence; namely, its range (f(n)). That is, we can iden-
tify C(N) with s by way of the correspondence f € C(N) «— x € s, where
xp = f(n). Convince yourself that

Co(N) =L, Co(N)=co, CoN)®R=c, (1.9)
and that
Cc(N) = {x € s : x, = 0 for all but finitely many n}. (1.10)

While this is curious, it doesn’t quite tell the whole story. Indeed, both £, and
c are actually C(K) spaces. To get a glimpse into why this is true, consider
the space N* = N U {oc}, the one-point compactification of N (that is, we
append a “point at infinity”). If we define a neighborhood of co to be any
set with finite (compact) complement, then N* becomes a compact Hausdorff
space. Convince yourself that

c=C(N" and co={f e CN"): f(co)=0)}. (1.11)

We’ll have more to say about these ideas later.

Hilbert Space

As you’ll no doubt recall, the spaces £, and L, are both Hilbert spaces, or
complete inner product spaces. Recall that a vector space H is called a Hilbert
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space if H is endowed with an inner product (-, -) with the property that the
induced norm, defined by

x|l = 4/ {x, x), (1.12)

is complete. It is most important here to recognize that the norm in H is
intimately related to an inner product by way of (1.12). This is a tall order for
the run-of-the-mill norm. From this point of view, Hilbert spaces are quite
rare among the teeming masses of Banach spaces.

There is a critical distinction to be made here; perhaps an example will
help to explain. Let X denote the space ¢, supplied with the norm ||x|| =
llxll2 + ll*]lso- Then X is isomorphic (linearly homeomorphic) to £; because
our new norm satisfies ||x]l2 < [lx|| < 2|lx|l2. But X is not itself a Hilbert
space. The test is whether the parallelogram law holds:

x4+ yI? + llx — ylII> = 2(IxI* + Ilyl?).

And it’s easy to check that the parallelogram law fails if x = (1, 0,0, ...) and
y =(0,1,0,...), for instance. The moral here is that it’s not enough to have
a well-defined inner product, nor is it enough to have a norm that is close to a
known Hilbert space norm. In a Hilbert space, the norm and the inner product
are inextricably bound together through equation (1.12).

Hilbert spaces exhibit another property that is rare among the Banach
spaces: In a Hilbert space, every closed subspace is the range of a continuous
projection. This is far from the case in a general Banach space. (In fact, it
is known that any space with this property is already isomorphic to Hilbert
space.)

“Neoclassical” Spaces

We have more or less exhausted the list of spaces that were well known in
Banach’s time. But we have by no means even begun to list the spaces that are
commonplace these days. In fact, it would take pages and pages of definitions
to do so. For now we’ll content ourselves with the understanding that all of
the known examples are, in a sense, generalizations of the spaces we have
seen thus far.

The Big Questions

We’re typically interested in both the isometric as well as the isomorphic
character of a Banach space. (For our purposes, all isometries are linear.



