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Preface

This book should provide a novel, and I hope enjoyable, way of
learning how to use relatively simple mathematical methods (often of
the ““back-of-the-envelope” variety) to understand how planet Earth
and its inhabitants interact.

The idea for this text evolved from courses in environmental sci-
ence I have taught at Yale University and the University of California
at Berkeley over the past 15 years. These courses have ranged from
the introductory undergraduate to the advanced graduate level. Re-
gardless of the level, I have stressed quantitative problem solving in
all my courses, and over the past 15 years I have invented a sizeable
repertoire of homework problems. These, along with a few delightful
ones contributed by my colleagues, form the basis for this book.

One thing my courses have taught me (or rather have recalled to
mind, for I knew it all too well when 1 was a student) is that the
ordinary combination of university math and science courses does not
prepare students well for solving a frequently occurring type of ““word
problem.” Such problems call for a quantitative answer, but their so-
lution involves information from several disciplines scrambled to-
gether. Often the statement of these problems has that fuzzy quality
characteristic of real-world situations. The problems we confront out-
side the classroom rarely take the streamlined form most textbooks
rely upon to test how well we’ve read each chapter.

In this book I try to provide guidance in overcoming barriers to
problem solving. To that end, the problems and solutions in the first
two chapters progress through a series of insights into problem solv-
ing itself. A more customary organization by environmental topic is
used in the final chapter.

At the core of the book are 44 problems, with as many worked-out
solutions. Chapter I provides a set of warm-up exercises. Elementary
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PREFACE

quantitative skills, such as conversion of units and approximation
methods, suffice to solve these first problems. Chapter II introduces
a variety of “back-of-the-envelope” problem-solving methods. These
techniques enable you to solve many problems with very little ef-
fort—often in a few lines—once you know how to begin and what
tools to use. In Chapter III, Beyond the Back of the Envelope, the
problem-solving methods developed in the preceding chapters are ap-
plied to more complex situations. Methods of problem solving more
advanced than those in Chapter II are introduced there. In the prob-
lems of Chapter IIl you will recognize the real-world fuzzy quality
referred to above. To solve these we will have to define our variables
and system boundaries, invent models, and select tools for extracting
information from the models.

Homework exercises are provided at the end of each problem. Par-
ticularly difficult exercises are indicated by an asterisk. A few of the
tasks proposed are very difficult, requiring term-paper effort; these
are marked with two asterisks. Numerical answers to many of the
exercises are given at the back of the book.

The solutions to certain of the 44 problems, particularly the more
complex ones in Chapter III, are presented at three levels. First, I
provide a “hand-waving” solution (i.e., an informed guess) in which
the qualitative behavior of the problem’s elements is deduced. Often
the sign (for example, heating versus cooling) and the order of mag-
nitude of the response of a complex system to a disturbance can be
figured out without a detailed mathematical analysis. In some cases
the “hand-waving’ approach gives an absurd answer. By identifying
the reason for that absurdity, we can then gain insight into how the
problem should really be solved. At the second level, analytical pro-
cedures and a detailed quantitative solution are presented. Because
realistic environmental issues are dealt with in this book, a number
of simplifying assumptions are generally made at this level to obtain
a precise solution. At the third level of solution, 1 describe methods
for deducing the approximate consequences of removing some of
level two’s simplifying assumptions. Obtaining the results of such de-
ductions is often left as a homework exercise.

I believe that high-school level mathematics, properly applied, can
go a long way toward elucidating complex situations. Readers with
limited or no prior exposure to calculus and differential equations will
be able to follow completely most of the problem solutions presented
here. Only the last two problems in Chapter II and a few in Chapter
III require some use of simple differential equations; even in those
problems the qualitative discussion will be of value to readers with
relatively little preparation in mathematics.

Solution to some of the problems presented here requires funda-
mental information to which not all readers have access. The Appen-
dix to this volume, containing tabulated data about nature and tech-
nology, should help. In addition, useful source materials are cited
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throughout the text for readers seeking further information. A bibli-
ography at the back of the book lists these sources. A glossary is also
provided.

All the problems presented here can be solved analytically, without
the use of computers. Even in the more difficult problems, the math-
ematical models employed are not elaborate. I believe it is preferable
in environmental analysis to develop relatively simple, analytically
tractable models, rather than complex ones requiring truckloads of
parameters. The advantage of being able to “tinker” mentally with a
simple, penetrable model, and thus explore the consequences of a
variety of assumptions, outweighs in most cases the greater realism
that might be attained with a complex model.

Thus the “spherical cow” in the title of this book. The phrase
comes from a joke about theoreticians I first heard as a graduate stu-
dent. Milk production at a dairy farm was low so the farmer wrote to
the local university, asking help from academia. A multidisciplinary
team of professors was assembled, headed by a theoretical physicist,
and two weeks of intensive on-site investigation took place. The
scholars then returned to the university, notebooks crammed with
data, where the task of writing the report was left to the team leader.
Shortly thereafter the farmer received the write-up, and opened it to
read on the first line: “Consider a spherical cow. . . .”

The spherical cow approach to problem solving involves the strip-
ping away of unnecessary detail, so that only essentials remain. Of
course, approaching the complex world from the spherical cow per-
spective can sometimes annoy others. To an expert who has labored
long in the field, the cow that to you is spherical may be sacred. The
trick is to know which details can be stripped away without changing
the essentials. This book should help readers develop a knack for
doing this.

This text should serve two functions. First, it should teach the
reader how to transform realistic, qualitatively described problems
into quantifiably solvable form and to arrive at an approximate solu-
tion. Second, it should teach concepts in environmental science from
the novel perspective of problem solving. Readers may want to sup-
plement this book with a general textbook in environmental science,
such as the excellent Ecoscience by Ehrlich, Ehrlich, and Holdren
(1977). Others, with more advanced backgrounds, are urged to graze
among the more specialized sources cited throughout this text.
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Chapter I
Warm-up Exercises

Only basic problem-solving skills are needed in this chapter. The first
problem requires you to guess the approximate values of some num-
bers that you probably haven’t thought about very much. (Guessing
makes some people uncomfortable, but give it a try.) Problems 1.2
and 1.3 can be solved using only basic ideas about areas, volumes,
and density; the second homework exercise in Problem 1.3 will get
you thinking about probabilities. The next two problems are about
depletion and growth, determining how long resources will last at
present consumption rates and how rapidly population density in-
creases at the present growth rate. If your logarithms are rusty, now
is the time to polish them up. The last two problems in this chapter
show how to derive measures of the magnitude of the human pres-
ence on Earth today. Solving them requires skill in selecting relevant
data and in converting from one kind of unit to another. All but the
first problem in this chapter will send you scurrying to the tables of
information in the Appendix. Familiarize yourself with what the Ap-
pendix offers. You'll refer to it often in solving problems later on.






WARM-UP EXERCISES 3

1. Counting Cobblers

How many cobblers are there in the United
States?'

One excuse for including this problem in a book about the environ-
ment is that getting your shoes repaired consumes less resources than
buying a new pair. It is here mainly, however, to illustrate the ease
with which a few plausible guesses can be combined to answer a
question that at first glance seems resistant to guesswork. Can you
estimate the order of magnitude? of the answer?

To do so, you could find out if there are cobbler licensing boards
and, if so, write to them for their statistics. Or you could walk to the
library and check the yellow pages of telephone directories for repre-
sentative U. S. cities. However, why not be lazy and let your mind
do the walking? Start by assuming that cobblers are generally busy
most of the work week. As a rough estimate, they spend about 10
minutes on a heel job and perhaps 30 minutes on full heels and soles.
More complicated repairs are rare, so ignore them. If time out for
cleaning shop and dealing with customers is included, an average of
30 minutes per job is a reasonable guess. (Remember, the answer is
an order of magnitude.)

[>
Lio¥liiq

10,03/, (0,032 ...

1. A variation on this problem is found in the text Used Math by Swartz (1973), which
is an excellent introductory review of applied mathematics.

2. When a number characterizing something is known imprecisely, either because the
measurements are poor or because the “something” varies alot, an order-of-magnitude
estimate is often given. Usually, orders of magnitude are expressed as powers of 10; a
number that is in the range of 0.3 to 3 is said to be on the order of magnitude of 1; a
number between 3 and 30 is on the order of magnitude of 10, and so forth.
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By this reasoning, a cobbler can finish perhaps 15 jobs in a work-
day, or about 4000 a year. All you need to know now is how many
repair jobs are done each year in the United States. I get a pair of
shoes or boots regalred about every four years. Assuming [ am typi-
cal, the 2.3 x 10 ):Jle in the United States (1983) have about 2.3
x 10%4 or 5.75 X 10 repair jobs carried out each year. Since one
cobbler can repair 4000 shoes in a year, we need 5.75 X 107/4000 or
14,375 cobblers to do all the repair work in the United States.

You should be careful not to write your answer as 14,375, how-
ever. That number has five significant figures: the 1, the 4, the 3, the
7, and the 5, and a pretense to such accuracy is unjustified. An order-
of-magnitude answer was wanted, so 10* will suffice. A more precise
answer—one valid to five significant figures—would require input
data precise to five significant figures, and we used no such data.
Nonsignificant figures have a habit of accumulating in the course of a
calculation, like mud on a boot, and you must wipe them off at the
end. It is still good policy to keep one or two nonsignificant figures
during a calculation, however, so that the rounding off at the end will
yield a better estimate.

Try your hand at the exercises below. Provide order-of-magnitude
answers.

EXERCISE 1: Suppose you have never watched a cobbler
work, so you have no idea how long each job takes; but you have
paid the cobbler’s bill. How will you estimate the number of cobblers
in the United States now?

EXERCISE 2: How many dentists are there in New York, a city
of roughly 107 people? How many fresh tarts (along with cobblers and
other fruit pastries) are there in the “Big Apple’’?

EXERCISE 3: How many pairs of shoes can be made from a
cow? (Hint: consider a spherical cow—and a spherical shoe, to boot.)

EXERCISE 4: About what fraction of a cubic centimeter of rub-
ber is worn off an automobile tire with each revolution of the wheel?
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2. Measuring Molecules

Benjamin Franklin dropped oil on a lake’s surface
and noticed that a given amount of oil could not
be induced to spread out beyond a certain area.” If
the number of drops of oil was doubled, then so
was the maximum area to which it would spread
His measurements revealed that 0 1 em® of oil
spread to a maximum area of 40 m*. How thick is
such an oil layer?

Let's denote the thickness of the layer by the symbol d. If d is ex-
pressed in units of meters, then the volume of that layer is 404 m’.
Since oil does not change volume much under changes in pressure or
temperature, it is reasonable to assume that the volume of the oil
sample does not change significantly simply by being spread out on
a surface. Therefore,  Wecan equate the initial volume, 0.1 cm?, to the
final volume, 40d m®, and thus determine d. First, though, we must
express both volumes in the same units. If we select cub1c meters as
our unit of volume, then we have to express 0.1 cm in m® Smce
1 m = 100 cm, it follows by cubing both sides that 1 m® = (100) cm
or 1 m* = 10° cm®. Hence, 1 cm’ = 107° m® and 0.1 ecm’ —107
Now that the units are consistent, we can equate 40d m® with
10 7 m® to getd = 10 7/40 = 25 x 107", in units of meters.

A length of 107" m is called an angstrom and is denoted by the
symbol A. Thus, d equals 25 A. The angstrom is a convenient unit
because the lighter atoms such as hydrogen, carbon, and oxygen are
on the order of magnitude of 1 A in diameter. The distance between
atoms in the molecules of common liquids and solids is also on the
order of magnitude of 1 A. The oil layer, then, is on the order of
magnitude of ten atoms thick. For the kind of oil Franklin used, this
is equivalent to being approximately one molecule thick. That is why
such thin oil layers are called “monomolecular layers,” and it is also
why the oil layer would not spread thinner.

The pragmatic Franklin was interested in these experiments be-
cause he wished to explore the use of oil to calm rough waters and
thereby prevent wave damage to ships. In Franklin’s time, no one
knew about molecules, but his creative experimental approach en-
abled him to make, in effect, the first estimate of a molecule’s size!

EXERCISE 1: Franklin actually showed that 1 teaspoon of oil
would spread to cover about 0.5 acre. Using the information in the

3. See Goodman (1956) for more on Franklin’s many scientific achievements.
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Appendix (1.3) that 10* m* = 2.47 acres, determine how many cubic
centimeters there are in a teaspoon.

EXERCISE 2: Estimate the average spacing between H,O mol-
ecules in liquid water by making use of two pieces of information:
(a) liquid water has a density of 1 g/lcm®, and (b) every 18 g of water
contain Avogadro’s number (6.02 X 10%) of H,O molecules.
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3. The Size of an Ancient Asteroid

It has been proposed that dinosaurs and many
other organisms became extinct 65 million years
ago because Earth was struck by a large asteroid
(Alvarez et al. 1980). The idea is that dust from the
impact was lofted into the upper atmosphere all
around the globe, where it lingered for at least
several months and blocked the sunlight reaching
Earth’s surface. On the dark and cold Earth that
temporarily resulted (Pollack et al. 1983), many
forms of life then became extinct. Available evi-
dence (Alvarez et al. 1980) suggests that about 20%
of the asteroid’s mass ended up as dust spread
uniformly over Earth after eventually settling out
of the upper atmosphere This dust amounted to
about 0.02 g/cm* of Earth’s surface. The asteroid
very likely had a density of about 2 g/cm’. How
large was the asteroid?

e e 0 s 000

To solve this problem we proceed in two steps. First we estimate the
mass of the dust, and then we determine how big the asteroid must
have been to contain that mass. The dust surrounds the Earth. Ac-
cording to the Appendix, Earth has an area of 5.1 x 10" m? or
5.1 x 10" ecm?. Since every square centimeter contained 0.02 g of dust
from the asteroid, the dust layer contained a mass of (0.02 g/cm?)
(5.1 x 10® em?) = 1.02 x 107 g.

This much dust is 20% of the mass, M, of the asteroid, so the
asteroid had a mass of

1.02 x 10"
M=00+0g=5.1 x 10" g. 1)

Now, consider a spherical asteroid with a radius, R. Its volume, V,
is given by

V = - wR°. ()

W W=

The mass of material in the asteroid is equal to the density, p, times
the volume, or

4
= pV = P mR3. (3)



