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Preface

The modeling of liquids and solutions with computational tools is a very complex problem
which involves several research groups in different parts of the world. Many alternative
theoretical models and computational algorithms have been proposed so far. All these
models, however, can be classified in two main classes, namely that using an equivalent
description for all the components of the system (the solute and the solvent molecules
in a dilute solution, the molecules of the different species forming a mixture, etc.), and
the other introducing a focused approach, i.e. a hierarchical approach in which the most
interesting part of the system is treated at a much more accurate level than the rest. The
first class of models include very different approaches which go from classical Molecular
Dynamics (MD) and Monte Carlo (MC) simulations to accurate quantum mechanical
(QM) calculations on small-medium clusters to ab-initio MD simulation on larger set of
molecules.

Also the second class of methods include very different approaches; however, in all of
them we can individuate a common aspect, namely the use of a mean-field description
for the part of the system encircling the subsystem of real interest. In the application
of this class of methods to the study of liquid solutions, the most important mean-field
approach is represented by continuum models. In such models, the solute is assumed to
be inside a cavity of proper shape and dimension within an infinite continuum dielectric
mimicking the solvent.

Continuum solvation models are nowadays widespread computational techniques to
study solvent effects on energy/geometry/reactivity and properties of very different molec-
ular systems (from small molecules to very large biochemical systems such as proteins
and enzymes).

Continuum solvation models have a quite long history which goes back to the first
versions by Onsager (1936) and Kirkwood (1934), however only recently (starting
since the 90s) they have become one of the most used computational techniques in
the field of molecular modelling. This has been made possible by two factors which
will be presented and discussed in the book, namely the increase in the realism of
the model on the one hand, and the coupling with quantum-mechanical approaches on
the other. The greater realism has also meant an important evolution in the mathemat-
ical formalism and in the computational implementation of the continuum models while
the QM reformulation of such models has allowed the study of chemical and physical
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phenomena which were impossible to treat with classical only models. This important
evolution of continuum models which has transformed them from empirical or qualita-
tive approaches to accurate and quantitative methods has been realized in the last ten
years and only now has real maturity been reached.

In addition to this, the literature on successful applications of these models to real
chemical systems and problems has become large enough to stately prove the reliability
of these models.

It thus become very interesting to give to both researchers and students a new book in
which the analysis of both theory and applications of continuum models is reviewed.

For the first time, solvation continuum models are treated in an up-to-date and coherent
way but at the same time using very different points of view coming from experts
belonging to very different research fields (mathematicians, theoretical chemists, compu-
tational chemists, spectroscopists, etc.).

The book is partitioned into four chapters.

The first chapter focuses on a specific class of continuum solvation models, namely
those using as a descriptor for the solvent polarization an apparent surface charge (ASC)
spreading on the molecular cavity which contains the solute. This class of methods is
central in the whole book (and especially in this first chapter) as during these last years it
has become the preferential approach to account for solvent effects in QM calculations.
A particular mention, among ASC methods, is for a specific formulation known as
Polarizable Continuum Model (PCM). Nowadays, this acronym no longer represents a
single computational method but a family of methods which are now available in various
QM computational packages.

The physics beyond such a family of PCM models is presented and discussed by
Tomasi together with an overview on the main features characterizing these models
which will be further analyzed in the following chapters.

From a mathematical point of view the PCM models can be unified according to
the approach they use to solve the linear partial differential equations determining the
electrostatic interactions between solute and solvent. This analysis is presented by Cances
who reviews both the mathematical and the numerical aspects of such an integral equation
approach when applied to PCM models.

A further analysis of the main numerical aspects related to the computational imple-
mentation of such a theory is presented and discussed by Pomelli with particular attention
given to the definition of the molecular cavity and the sampling of its surface.

The last fundamental aspect characterizing PCM methods, i.e. their quantum mechan-
ical formulation, is presented by Cammi for molecular systems in their ground electronic
states and by Mennucci for electronically excited states. In both contributions, particular
attention is devoted to the specific aspect characterizing PCM (and similar) approaches,
namely the necessity to introduce an effective nonlinear Hamiltonian which describes the
solute under the effect of the interactions with its environment and determines how these
interactions affect the solute electronic wavefunction and properties.

In the other two sections of the chapter two further generalizations of PCM models
are presented to spatially and dynamically nonlocal media (Basilevsky & Chuev) and to
a Lagrangian formulation which includes the polarization of the medium as a dynamical
variable (Caricato, Scalmani & Frisch), respectively. In the first case, the goal is to
account for the discreteness of molecular liquids still within a continuum description of
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the solvent, while in the second case the goal is to describe any kind of time-dependent
phenomena exploiting an efficient coupling of continuum models with standard MD
simulations, both classical and ab-initio.

The second chapter presents extensions and generalizations of continuum solvation
models (mostly of PCM type but not exclusively) to the calculation of molecular proper-
ties (both dynamic and static) and spectroscopic features of molecular solutes in different
environments of increasing complexity.

Computational methods to study solvent effects on NMR (Sadlej & Pecul) and EPR
(Barone, Cimino & Pavone) parameters are presented and discussed within the PCM as
well their generalizations to hybrid continuum/discrete approaches in which the presence
of specific interactions (e.g. solute-solvents H-bonds) is explicitly taken into account by
including some solvent molecules strongly interacting with the solute.

Solvent effects on vibrational spectroscopies are analyzed by Cappelli using clas-
sical and quantum mechanical continuum models. In particular, PCM and combined
PCM/discrete approaches are used to model reaction and local field effects.

Rizzo reviews in a unitary framework computational methods for the study of linear
birefringence in condensed phase. In particular, he focuses on the PCM formulation of
the Kerr birefringence, due to an external electric field yields, on the Cotton-Mouton
effect, due to a magnetic field, and on the Buckingham effect due to an electric-field-
gradient. A parallel analysis is presented for natural optical activity by Pecul & Ruud.
They present a brief summary of the theory of optical activity and a review of theoretical
studies of solvent effects on these properties, which to a large extent has been done using
various polarizable dielectric continuum models.

The inclusion of the environment effects for non-linear optical (NLO) properties is
presented within the PCM (Cammi & Mennucci) and the multipolar expansion (Agren
& Mikkelsen) solvation models. In the first contribution the attention is focused on the
connection between microscopic effective properties and macroscopic NLO susceptibil-
ities, whereas in the latter contribution the analysis is extended to treat heterogeneous
dielectric media.

The extension of continuum models to complex environments is further analyzed by
Ferrarini and Corni & Frediani, respectively. In the first contribution the use of PCM
models in anisotropic dielectric media such as liquid crystals is presented in relation
to the calculation of response properties and spectroscopies. In the second contribution,
PCM formulations to account for gas-liquid or liquid-liquid interfaces, as well for the
presence of a meso- or nano-scopic metal body, are presented. In the case of molecular
systems close to metal bodies, particular attention is devoted to the description of the
surface enhanced effects on their spectroscopic properties.

The second chapter ends with two overviews by Stephens & Devlin and by Hug on
the theoretical and the physical aspects of two vibrational optical activity spectroscopies
(VCD and VROA, respectively). In both overviews the emphasis is more on their basic
formalism and the gas-phase quantum chemical calculations than on the analysis of
solvent effects. For these spectroscopies, in fact, both the formulation of continuum
solvation models and their applications to realistic solvated systems are still in their
infancy.

The third chapter focuses on the modelization of solvent effects on ground state
chemical reactivity and excited state reactive and non-reactive processes.
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The effects of the surrounding medium on the shape of the potential energy surfaces
(PES) is discussed by Cossi & Rega using the PCM formulation of continuum models
while Soteras, Blanco, Huertas, Bidon-Chanal, & Luque present an overview of the
current status and perspectives of theoretical treatments of solvent effects on chemical
equilibria using different versions of continuum solvation model. A different aspect of
the modelization of chemical reactivity is given by Truhlar & Pliego. In particular, they
describe how continuum models can be used to predict the free energy of activation of
chemical reactions and the effective potential for condensed-phase tunneling, and they
can therefore be combined with variational transition state theory (VTST) to predict
chemical reaction rates.

With the other contributions, the focus of the chapter is shifted to electronically excited
states and their dynamics and reactivity.

The computational and experimental analysis of time dependent solvatochromic shift
in fluorescence spectra of solutes is used by Ladanyi to achieve an accurate description
of solvation dynamics, i.e., the rate of solvent reorganization in response to a perturbation
in solute—solvent interaction.

Electron transfer (ET) reactions are analyzed by Newton in terms of continuum solva-
tion models. Their role in the determination of the ET critical parameters (i.e. the solvent
reorganization energy and the electronic coupling between the initial and final states) is
analyzed using both an equilibrium and nonequilibrium solvation framework.

Photoinduced hydrogen-transfer and proton-transfer chemistry in hydrogen-bonded
chromophore-solvent clusters are analyzed by Domcke & Sobolevski exploiting an
interplay of QM and spectroscopic approaches.

Laage, Burghardt & Hynes present and discuss analytic dielectric continuum
nonequilibrium solvation treatments of chemical reactions in solution involving conical
intersections. Their analysis shows that theories of the rates of mechanisms of the chem-
ical reaction in solution have to incorporate the fact that the solvent can be out of
equilibrium with the instantaneous charge distribution of the reacting solutes(s).

Persico & Granucci focus on the nonadiabatic dynamics of excited states in condensed
phase. Static environmental effects are discussed in terms of the change of the PES
with respect to the isolated molecule, while dynamic effects are described in terms of
transfer of energy and momentum between the chromophore (or reactive centre) and the
surrounding molecules.

The third chapter ends with two contributions on the effects of the environment on the
excitation energy transfers (EET) between chromophores.

In the first contribution, Huxter & Scholes present a review of the recent evolution
of theory of EET in condensed phase from their earliest and simple formulation, based
on the Forster theory to the most recent advances of theoretical and computational
methods based on continuum solvation models. In the second contribution, Curutchet
reviews the recent developments of PCM towards accurate theoretical investigations of
EET in solution. In particular, the modelization of the various contributions of solvent
effects in the chromophore—chromophore electronic coupling is presented using quantum-
mechanical approaches.

The fourth chapter presents extensions and generalizations of continuum models to
classical molecular dynamics simulations, to layered and to hybrid methods as well as to
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methods which can be considered as alternative to continuum models to account for the
environment effects.

In more detail, Orozco, Marchan & Soteras review recent implementations of
continuum models in the context of MD or MC calculations, to study solvent effects
on the conformational space of large, flexible molecules. Vreven & Morokuma outline
the formalism of the ONIOM method and how it can be extended to include solva-
tion effects, both implicitly (using a ONIOM-PCM combination) and explicitly (using
a ONIOM supra-molecular description). Mikkelsen covers the theoretical background
of the multiconfigurational self-consistent field response methods for calculating molec-
ular properties of molecules interacting with a structured environment using a hybrid
QM/MM approach. Milani, Tommasini, Del Zoppo & Castiglioni compare Raman and
infrared experiments in condensed phase with the results obtained using both a quantum
supra-molecular approach and a simplified electrostatic embedding scheme.

Aguilar, Sanchez, Martin, & Fdez. Galvan review the ASEP/MD method, acronym
for Averaged Solvent Electrostatic Potential from Molecular Dynamics, showing how
this method combines aspects of quantum mechanics/molecular mechanics (QM/MM)
methods with aspects of continuum models.

Sato presents an alternative method to both continuum solvation models and hybrid
QM/MM or ONIOM approaches. This is represented by the “reference interaction site
model” (RISM) formalism when combined to a QM description of the solute to give the
RISM-SCF theory.

As shown in this brief description of the contents, the book aims to present the main
aspects and applications of continuum solvation models in a clear and concise format,
which will be useful to the expert researcher but also to Ph.D. students and postdoctoral
workers.

To this end, the presentation of the various contributions follows a step-by-step scheme
in which the physical bases of the models come first followed by an analysis of both
mathematical and computational aspects and finally by a review of their applications to
different physical-chemical problems. For all the parts of the book two reading levels
will thus be possible: one, more introductory, on the given theoretical issue or on the
given application, and the other, more detailed (and more technical), on specific physical
and numerical aspects involved in each issue and/or application. In such a way, the reader
will first be introduced to a given subject through a general description of the problem
(with more emphasis on those aspects which are more directly related to the presence
of the solvent), and then she/he will discover how continuum models can be extended
and generalized to properly describe such a problem. In parallel, possible limitations or
incompleteness of these models are pointed out with indications of future developments.

Ending this Preface we would like to give our sincere thanks to all the colleagues
who are (or have been) part of the PCM group in Pisa in the last years and have also
contributed to this book: Chiara Cappelli, Marco Caricato, Stefano Corni, Maurizio Cossi,
Luca Frediani, and Christian Pomelli.

The final and most important acknowledgement goes however to Professor Jacopo
Tomasi who greatly contributed to the formation of our scientific and personal growth.

Benedetta Mennucci and Roberto Cammi.
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1

Modern Theories of Continuum
Models

1.1 The Physical Model

Jacopo Tomasi

1.1.1 Introduction

As the title indicates, this chapter focuses on methodological problems relating to the
description of phenomena of chemical interest occurring in solution, using methods in
which a part of the whole material system is described by continuum models.

The inclusion in the book of this introductory section has been motivated by the
remarkable advances of continuum methods. Their extension to more complex properties
and to more complex systems makes it necessary to have a more detailed understanding
of the way in which physical concepts have to be further developed to continue this
promising line of investigation. The relatively simple procedures in use for three decades
to obtain with a limited computational effort the numerical values of some basic prop-
erties, such as the solvation energy of a solute in very dilute solution, are no longer
sufficient.

To appreciate the basic reasons why continuous models are so versatile and promising
for more applications, however, we have to consider again the simple systems and the
simple properties mentioned above. The best way to gain this initial appreciation is to
contrast the procedures given by discrete and continuum methods to obtain the solvation
energy in a very dilute solution.
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2 Continuum Solvation Models in Chemical Physics

1.1.2 Solvation Energy

The Discrete Approach

The material model consists of a large assembly of molecules, each well characterized and
interacting according to the theory of noncovalent molecular interactions. Within this
framework, no dissociation processes, such as those inherently present in water, nor other
covalent processes are considered. This material model may be described at different
mathematical levels. We start by considering a full quantum mechanical (QM) description
in the Born-Oppenheimer approximation and limited to the electronic ground state. The
Hamiltonian in the interaction form may be written as:

H" (ry, r5) = ™ (ry) + HS (r) + H (r5) + HMS (ryy, 1) (1.1)

In extremely dilute solutions only a single solute molecule M is sufficient and so AM
refers to a single molecule only. The number of solvent molecules S is in principle
infinite, but the physics of the system is sufficiently well described by a finite, albeit
large, number 7 of S units.

The third term of the Hamiltonian, HS, represents the interactions between such
molecules, and the last term, HMS the interactions between M and the » solvent molecules.
The coordinates (ry, rg) apply to both electrons and nuclei. Nuclear coordinates have to
be explicitly considered, because the mobility of solvent molecules is a very important
factor in liquid systems, and changes in their internal geometry, due to the intermolecular
interactions, may also play a role.

The formulation of the Hamiltonian given in Equation (1.1) has introduced considerable
simplifications in the formulation of the problem (the existence of specific molecules
and their persistence has been acknowledged) but the computational problem remains
formidable. Approximations are unavoidable.

The system is described as an assembly of interacting molecules whose motions are
governed, in a semiclassical approximation, by a potential energy surface (PES) of
extremely large dimensions related to the positions of all the nuclei of the system, internal
nuclear motions within single molecule being for the moment still allowed. The approach
used for the characterization of small clusters, i.e. searching first for the minimum energy
conformation of the PES, cannot be used here. The physics of solvation is remarkably
different. Solvation energy and related properties (solvent effects on the solute geometry
are an example) are averaged properties and we are compelled to perform a suitable
average upon the energies corresponding to all the accessible conformations of the whole
molecular system.

Statistical thermodynamics gives us the recipes to perform this average. The most
appropriate Gibbsian ensemble for our problem is the canonical one (namely the
isochoric—isothermal ensemble N,V,T). We remark, in passing, that other ensembles such
as the grand canonical one have to be selected for other solvation problems). To deter-
mine the partition function necessary to compute the thermodynamic properties of the
system, and in particular the solvation energy of M which we are now interested in, of a
computer simulation is necessary [1].

We do not enter into the description of Monte Carlo of Molecular Dynamics methods,
as these details are not important for our discussion. There are other more general aspects
of computer simulations to consider here.



