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PREFACE

This work arises from two sources and is therefore written in two parts. The
first part has grown out of 20 lectures given to senior undergraduates and
fresh graduate students of the University of the West Indies, Trinidad, and
the University of Port Harcourt, Nigeria. A generous invitation to the first
Caribbean Physics Meeting, sponsored by the Organization of American
States and held at the Jamaica Campus of the University of the West Indies,
was the motivating factor for adding the second part, which is based on a
paper presented at the meeting.

The book is written at the level and style of lecture notes on the applications
of group theory to solid state physics. The first part is intended for beginners
in the field and as such a more complete treatment of the topics discussed
here must be sought in the references given at the end of the text. This part
is aimed at showing, via the extensive use of character tables, how symmetry
arguments can be used to give a detailed insight into the physical properties
of crystals closely linked with structures. An elementary course in solid state
physics and quantum mechanics is considered a necessary prerequisite for
this course.

Since the mathematical language of symmetry concepts is group theory,
which is really a branch of pure mathematics, it is usually developed with
reference to abstract entities. However, this is not the approach taken in Part
I. All elegant proofs etc have been omitted. Experience has shown that for
most beginners a better approach is to present first (as far as possible) the
applications of symmetry and only afterwards should the formal aspects of
the theory be introduced, if they need to be introduced at all at this stage!

Part I includes the following basic areas:

(1) introduction to group theoretical concepts and techniques;
(i1) basic symmetry operations present in the solid state;
(ii1) illustrative examples.

I am sure that those who have the patience to go through this first part
would acquire a workmanlike knowledge of group theory and would, with
some determination and effort, be in a position to understand the second
part of this book which deals with the more recent studies on the symmetry
properties of magnetic crystals.

Part I contains a number of exercises at the end of each chapter. Most of
these follow some derivation or development from within the text. All these
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problems have either detailed solutions or hints, given at the end of the book,
which readers will find quite useful in understanding the subject matter.

It is hoped that this book will provide the necessary basis for further
detailed courses on the subject and as such the selection of topics in Part [
is deliberately restricted.

Part II is meant to be self-contained and can be read without reference
to Part I by readers who are familiar with elementary group theory. It should
also prove useful to graduate students and research workers beginning the
study of magnetic crystals. It is hoped that it will provide a useful adjunct
to any advanced course on the applications of symmetry principles in solid
state physics.

S J Joshua
March 1990
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ELEMENTS OF SYMMETRY THEORY

1.1 Introduction

Crystals play a particularly important role in modern-day solid state
electronic devices. In the study of the behaviour and properties of crystalline
materials, one requires a good exposure to:

(i) quantum mechanics, which is needed to study the behaviour and
properties of individual atoms;
(1) statistical mechanics, which is needed to describe the average properties
of a large ensemble of atoms; and
(iii) symmetry theory (or group theory), which is needed to describe and
understand the properties arising from the symmetrical structure of the solid.

In this book we shall be concerned only with (iii). Group theory, however,
is really a branch of pure mathematics and as such it is usually developed
with reference to abstract entities. Nevertheless, this is not the course we
shall adopt, as we shall be mainly concerned with the applications of the
theory to problems in crystal physics.

1.2 The role of symmetry

Symmetry arguments not only greatly simplify calculations of the thermal,
electrical, optical and magnetic properties of solids etc, but also often give
a detailed insight into the physical situation. It is therefore a standard practice
amongst research workers to carry out a symmetry analysis before undertaking
any calculations or experimental investigations on problems in crystal physics.

Given any crystal system it is prudent to begin by considering what
information may be gleaned from a symmetry analysis of the structure. As
often happens, even when the empirical work has been done, a symmetry
analysis is still very helpful in testing various models put forward.

The symmetry which we aim to exploit via group theory is, in most cases,
the symmetry of the Hamiltonian operator. An operator will be a symmetry
operator appropriate to a given Hamiltonian, if the Hamiltonian looks the
same after applying the operation as it did before; in other words, the
Hamiltonian is invariant or unchanged under the operation. Our studies of
the symmetry of the Hamiltonian of the system will indicate the range of
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uses to which symmetry concepts can be put in quantum mechanics. To
achieve our goal we must first develop the elements of group theory in a
manner suitable for ready applications. Thus, we shall not spend time over
fundamental theorems, axioms, proofs, etc which can be found in many
excellent textbooks on group theory.

1.3 Symmetry concepts via group theory

1.3.1 Symmetry operations and symmetry elements

The symmetry possessed by a crystalline material is defined in terms of
symmetry operations. An operation is said to be a symmetry operation if
the body looks exactly the same after the operation as it did before the
operation was carried out. The operation could be, for example, rotations
through certain angles or reflections in various mirror planes. As an example,
consider the equilateral triangle shown in figure 1.1. It is easy to see that if
we performed an operation of rotating the triangle through 120° or 240°
about the z axis, the triangle would be left in a position which is indistinguish-
able from the starting position. Such an operation or movement which
transforms a body into itself or leaves it invariant is called a symmetry
operation and the body is said to possess the appropriate symmetry element.
A symmetry element is therefore a real geometrical part of the system and

Y
El a
X
oy, o,
2 A
c3 — V3 ! C
0 : - X
c® —
b
2 5
C3 C;

Oy, /

Figure 1.1 Symmetry operations corresponding to the crystal point group C;,. The
symbols have the following meanings (explained more fully in Chapter 4): C, cyclic
group; o, reflection plane; subscript 3, three-fold vertical rotation axes located at the
central point 0; subscript v, vertical reflection planes.
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also an identification symbol of the operation; for example, the symmetry
element C; of the equilateral triangle implies the following symmetry
operations: C3, which corresponds to a clockwise rotation operation through
120° about the z axis; and C2, which corresponds to a clockwise rotation
operation through 240° about the z axis. The symbols are defined later on;
for the moment it is important to note the difference between the terms
symmetry elements and symmetry operations.

1.3.2 Basic types of symmetry elements

In dealing with crystal symmetry (point) groups we need to consider only
the symmetry elements described and defined in table 1.1.

It is important to mention here briefly that suitable combinations of the
symmetry elements given in table 1.1 define what is technically termed as a
crystal point group. A crystal point group is defined as a collection of
symmetry operations which, when applied about a point in the crystal, will
leave the crystal structure invariant. Note that a crystal point group does
not contain any translation operations. These are explained more fully in §4.5.

1.3.3 What is a symmetry group?

A symmetry group is a collection of symmetry elements E, 4, B, C,..., X
which satisfy the following group properties.

Table 1.1 The basic type of symmetry elements in Schoenflies notation.

No. Symmetry element and symbol Symmetry operation(s)
1 Identity element: E Do nothing operation; like multiplying
by 1
2 Mirror plane: Reflection in a mirror
3 Centre of inversion or inversion Inversion of all coordinates through the
symmetry: / centre; I changes (x, y, z) to (—x, —Y,
—2)
4 Proper rotation axis: C, n-fold rotations about an appropriate

axis. An n-fold axis generates n operations,
e.g. the symmetry element C, implies the
operations: C}, C2, C3, C¢, C: and
Cé=E

5 Improper rotation axis: S, n-fold rotation about an axis followed
by a reflection in a plane perpendicular
to the axis of rotation, i.e. presence of
S, implies the independent existence of
both C, and ¢ elements




