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Preface

The addition of a junior author provided the impetus for making a major
revision of Calculus with Analytic Geometry. Previous users will discover that
the text has been completely reworked. Yet we have been careful to preserve
the basic integrity of a book that has met the needs of several hundred
thousand students in its first three editions. In particular, this new edition
continues to be a mainstream textbook for a three semester (four or five
quarter) calculus course. Like its predecessors, it stresses the seven funda-
mental concepts of calculus (function, limit, continuity, derivative, anti-
derivative, definite integral, and infinite series) and applies them in a myriad
of practical situations. In style, it is simple and direct with clear explanations,
an abundance of illustrative examples, and carefully graded problem sets.

While one would need to read a few sections to sense the true flavor of
the book, we can at least suggest some of its special features.

e A new specially designed format invites students to read the book. We
have aimed for a clean uncluttered appearance in which important results
stand out clearly. Theorems are labeled with letters and, more importantly,
the major ones are named (Monotonicity Theorem, Mean Value Theorem,
and so on) and referred to that way when needed later in the text. Sections
are of approximately equal length (one lecture) and are divided into sub-
sections, thus breaking up the large doses of prose that seem to frighten some
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students. A larger page size has allowed us to greatly increase the number of
illustrative figures (about 1100 in all).

o To give the book a more human quality, we have opened each chapter
with the picture and brief biography of a mathematician associated with that
chapter. Calculus was discovered and molded by real people with real faces.
Our experience indicates that students appreciate attempts to introduce bits
of history into a calculus course. Note the capsule history of calculus that
appears on the front end papers.

o While the first chapter offers a rapid survey of precalculus, it is intended
mainly as a reference. Many instructors will choose to begin at Chapter 2,
where three of the fundamental concepts of calculus (function, limit, and
continuity) make their appearance. Note that separate sections are devoted to
an intuitive and a rigorous definition of limit. The latter can be deemphasized
if desired.

e We introduce the trigonometric fuctions in Chapter 2 and find their
derivatives in Chapter 3, thus making these important functions available
for examples and problems throughout the book.

e Maxima-minima theory is presented in a logical and unified way (Chap-
ters 4 and 15). The term critical point is used to include stationary points
(where the derivative is zero), singular points (where the derivative fails to
exist), and endpoints. Thus, an extremum, if it exists, must occur at a critical
point. Also global extrema are automatically local extrema, which we think
conforms with good usage of the English language.

e The concept of linearity is highlighted throughout. The fact that all
the major operators of calculus (lim, D, j, Z, V) are linear is demonstrated
and used repeatedly. A final and significant application of this concept occurs
in the last chapter, which treats linear differential equations.

e A simple technique—slice, approximate, integrate—is used consist-
ently in showing how the definite integral arises in applications (see, for
example, pages 263, 269, 289, and 685).

e Recognizing that most students have electronic calculators, we have
greatly increased the emphasis on numerical techniques. We use the symbol
to designate those problems that are simplified by the use of calculators.
More significant is a whole chapter devoted to numerical calculus (Chapter
10). While there is an advantage in treating this material as a unit, instructors
can spread it throughout the course if desired.

e The gradient has been defined in a thoroughly modern way (Chapter
15) and plays a central role in an expanded treatment of vector calculus
(Chapter 17), which includes the theorems of Green, Gauss, and Stokes.

e We think many instructors will like our decision to define the multiple
integral of a function f first for a rectangular box. The general case is
obtained by the simple device of extending f as the zero function outside of
a given region (see Chapter 16).

o Finally, we mention that the problem sets have been enlarged in two
ways—more elementary problems and more applied problems. Each
chapter concludes with a section titled Chapter Review Problems. This
includes a true-false quiz centering on the theory of calculus and miscellaneous
problems of the kind a typical instructor might put on a chapter examination.
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Our preface concludes with a dependence chart. It is not the usual
dependence chart relating the various chapters to their prerequisites.
Rather, the chart announces the major ideas of calculus and shows how they
fit together. Issuing from the central notion of /imit are the principal concepts
(in ovals) and theorems (in boxes). We think a student will profit from
studying this simple one-page skeleton not so much at the beginning but
later, when the growing mass of material may seem overwhelming.

Edwin J. Purcell
Dale Varberg
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[Coordinate geometry), far more than any of his metaphysical
speculations, immortalized the name of Descartes, and constitutes the
greatest single step ever made in the progress of the exact sciences.

René Descartes is best known as the first great
modern philosopher. He was also a founder of
modern biology, a physicist, and a mathematician.

Descartes was born in Touraine, France, the
son of a moderately wealthy lawyer who sent him to
a Jesuit school at the age of eight. Because of
delicate health, Descartes was permitted to spend
his mornings studying in bed, a practice he found
so useful that he continued it throughout the rest
of his life. At age 20, he obtained a law degree and
thereafter lived the life of a gentleman, serving for
a few years in the army and living at times in Paris,
at others in the Netherlands. Invited to instruct
Queen Christina, he went to Sweden, where he
died of pneumonia in 1650.

The Real Number System

Decimals, Denseness, Calculators
Inequalities

Absolute Values, Square Roots, Squares
The Rectangular Coordinate System
The Straight Line

Graphs of Equations

Chapter Review Problems

John Stuart Mill

René Descartes
1596-1650

Descartes
searched for a
general method
of thinking that would give coherence to knowledge
and lead to truth in the sciences. The search led
him to mathematics, which he concluded was the
means of establishing truth in all fields. His most
influential mathematical work was La Géométrie,
published in 1637. In it, he attempted a unification
of the ancient and venerable geometry with the still
infant a/gebra. Together with another Frenchman,
Pierre Fermat (1601-1665), he is credited with the
union that we today call analytic geometry, or
coordinate geometry. The full development of
calculus could not have occurred without it.




