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Preface

This volume is devoted to the determination of the behaviour of perturbation theory at large
orders in quantum mechanics and quantum field theory. and its application to the problem of
summation of perturbation series.

Perturbation theory, useful in quantum mechanics for systems with sceveral degrees of
freedom, 1s the only known analytic method to calculate physical quantities in quantum field
theory. However, following arguments given by Dyson, it has long been suspected that the
perturbation series in field theory was divergent. Many vears have been necessary to develop
tools to deal with this question. In field theoryv. the representation of Green's (or correlation)
functions in terms of functional integrals has plaved an essential role. It has then been possible
to characterize the behaviour of perturbation theory at large orders for many models:
Perturbation series in manv quantum-mechanics models and in quantum field theory are
indeed only asymptotic and. thus, diverge for all values of the expansion parameter.

The behaviour at large orders provides information about the series domain of validity.
whether it defines the theory uniquely (the problem of Borel summability) and suggests
methods to extract numerical information from the series when the expansion parameter is not
small.

The reprinted articles can be roughly divided in three sets: A first set deals with simple
systems of the form of the quartic anharmonic oscillator or the ¢* field theory. It is shown. first
in quantum mechanics, how large-order behaviour is related to barrier-penctration effects for
unphvsical values of the expansion parameter. These effects can be calculated by semiclassical
methods of the WKB tyvpe as first discussed by Bender and Wu. However. thev can also be
inferred from a steepest descent calculation of the imaginary time or Euchidean path-integral
representation. Barrier penetration is then dominated by finite action solutions of Euclidean
classical equations of motions. instantons. The integration over path configurations close to the
classical paths leads to some subtle zero mode problems which can be solved by the method of
collective coordinates.

Only the instanton method can be easily generalized to quantum field theory, as first shown
by Lipatov. New problems arise connected with the need for renormalization. Renormalizable
and super-renormalizable methods behave somewhat differently in this respect.

The second set of articles deals with more complex svstems in quantum mechanics and
general boson field theories. including gauge theories (Abelian and non-Abelian) coupled to
scalar fields. From the point of view of Borel summability models fall into two classes: Models
in which the classical minimum of the potential is unique. and which has a change to be Borel
summable: and models in which the perturbative expansion has been performed around a
relative minimum of the potential or in which the minimum of the potential is degenerate and
instantons connect the minima. in which the series cannot be Borel summable. In the latter
example, which is more physically interesting, the large-order behaviour is not directly
connected to a solution of the Euclidean equation of motion but to configurations of pairs of
largely separated instantons.

Two-instanton configurations are the simplest example of so-called multi-instanton config-
urations. Their role has been fully analvzed only in simple quantum-mechanical models. A
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systematic discussion of this problem in field theory is still lacking. Models containing fermion
fields are then discussed. It is shown how the Pauli principle (reflected by the sign of the
fermion loops) affect the large-order behaviour.

A third set of articles deals with some problems which arise in the large-order analysis when
field theories are just renormalizable. Then contributions to the large-order behaviour come
from the large momentum singularities of Feynman diagrams (renormalons). They are related
to the first coefficient of the Callan-Symanzik B-function. In the case of infrared-stable (in the
renormalization group sense) theories they present Borel summability.

Finally, an application of the large-order behaviour analysis is included: The calculations of
critical exponents from ¢ field theory and renormalization group arguments since it relies on a
summation of perturbation series based directly on the knowledge of the large-order behaviour.

For completeness some articles have been added which consider the large-order behaviour in
the case of non-polynomial potentials, or for the large N expansions in models with O(N)
symmetries.

As a conclusion, the large-order behaviour analysis has significantly improved our under-
standing of perturbation theory, in particular in the field theory context. It has confirmed that
perturbation series in field theory are always divergent, but also suggested in some useful cases
methods to deal with this difficulty. In particular, it has made reliable calculations of physical
quantities based on perturbation theory possible even for not small coupling constants. The
evaluation of critical exponents near second-order phase transitions provides a very interesting
example.

J.-C. Le Guillou and J. Zinn-Justin
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1. Methods and Simple Examples

1.1. Introduction

In the text which follows, we want to present the general ideas basic to the analysis of the
behaviour of perturbation theory at large orders in quantum mechanics and in quantum-field
theory, and ‘introduce the articles which are reprinted in this volume. Additional references to
articles which, for lack of space, could not be included in this volume are given in section 5. In
the text, they are referred by [S...] to distinguish them from references to the reprinted articles.

1.2. Large-order behaviour: The intuitive idea

In his 1951 article about divergence of perturbation theory in QED, Dyson [1] presented the
following argument: let us consider a system of N charged particles (N being large) of same
charge e. The energy E of the system has the following structure,

E~NT+ 1e’VN?, (1.1)

in which T is the mean kinetic energy and V characterizes the mean Coulomb potential, the
factor 1 N? counting the number of interacting pairs. For e? positive, the ground state of such a
system is stable. However, if e? is negative, i.e., if the Coulomb potential between identical
charges becomes attractive, then the ground-state energy first increases with N for N small, but
when N becomes larger than some critical value N,

N.= —T/Ve?, (1.2)

the ground-state energy starts decreasing and behaves like —N? for N large. In a relativistic
system, pair creation is possible. Therefore, even if we begin with a state containing no charged
particles, due to quantum-barrier penetration effects an infinite number of pairs will be created,
and a state of infinite negative energy generated. For all values e? < 0, the Hamiltonian cannot
be bounded from below. We first conclude that in QED physical quantities cannot be analytic
functions of e?, they must have a singularity at e’ = 0. Furthermore, the perturbation series
will start being sensitive to this effect at order N, when the diagrams corresponding to the
creation of N, charged particles appear. One, therefore, expects that the terms in the perturba-
tion series will decrease for an order k, k < N_, and increase at higher orders. Let us write the
expansion of some physical quantity F(e?) as

F(e?) = kipk(ﬁ)". (1.3)
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We infer that

1
F,_\/F.~-— fork~N_.

A

o
Since N, is itself of order 1/¢* we find

Fo./F ~k.

F ~k!. (1.4)

We conclude that the ground-state instability for unphysical values of the coupling constants,
due to quantum mechanical barrier penetration effects, leads to the divergence of perturbation
theory. Moreover, by a calculation of the barrier-penetration coefficient we should be able to
estimate more accurately the large-order behaviour.

In the next section, we shall briefly examine the consequences of such a result for
perturbation theorv. Let us. however. note already that eq. (1.2) does not take into account the
Pauli principle with forbids to put an arbitrary number of fermions in the same state. The
estimate is really only valid for charged bosons.

[.3. Divergent series: A few remarks

Let f(z) be a function analytic in the domain D,

D: latg z| < Ya, |z| <p. (1.5)
We assume that f(z) can be expanded in a power series at the origin,
HEEDW S (1.6)
0

and that expansion (1.6) is asymptotic to f(z) in D. This means that series (1.6) diverges for
- # 0 and that in D it satisfies the bound

| N
7(2) = X A2 = 12150 forall K. . (1.7)
| k=0 |

Although the series in eq. (1.6) is always divergent. it can. nevertheless. be used to estimate the
function f(z) for |z] small. At |z| fixed. we can look for a minimum of the rh.s. of
expression (1.7) when we vary K. If |z is small enough. the bound first decreases with K and
then, since the series is divergent, finally increases. If we truncate the series at the minimum. we
get the best possible estimate of f(z). However. unlike the case of a convergent series. f(z) can
be estimated only with a finite accuracy. Let us assume, e.g.. that the coefficients Cy have the
form

Cy=MC *K!. (1.8)
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The accuracy is then characterized by a function &(z) which is given by

s‘(:)*mm(,\\_\ ~exp(=C/1z1). (1.9)

We see that an asymptotic series does not, in general, define a unique function. If the series 1s
asymptotic to a first function f(z), it is also asymptotic to

flz)y+bexp(—a/z). with «acos(la)>C.

e.g.. since this new function is analytic in D and satisfies the bound given in eq. (1.7) in D. at
least for |h| small enough. However, there is one situation in which the asymptotic series
defines a unique function. If the angle « satisfies the condition

azm., (1.10)
then a classical theorem about analytic functions tells us that a function analytic in D and
bounded by ¢(z) in the whole domain vanishes identically.

In the latter case. the next problem is to find a method to reconstruct the function from the
serics. This question will be examined later.

However, from this discussion we conclude that the prohlem of the behaviour of perturba-
tion theory at large orders is not only to discover if, as Dyson’s simple arguments suggest, the
perturbation series is divergent. but. in addition. when 1t 1s divergent. whether it determines the
phyvsical quantities uniguely or not.

1.4. Large-order behaviour and dispersion relation

Let us assume for simplicity that f(z) is a real function, analytic in the cut plane with a cut
along [— oo, 0], and that it can be represented by a Cauchy integral as

0 ,Im
.-:—[ H/L). (1.11)
If f(z) has an asymptotic expansion near z = 0,
2i=Y.f=", (1.12)
k
the coefficients f, are then given by
i 1 0 d-z . .
]A,=: g [II’I\/(:). (1.13)

For k large. the Cauchy integral is clearly dominated by the small values of -. Therefore, the
large-order behaviour of the coefficients of the asvmptotic series can be derived from the
knowledge of the behaviour of Im f(z) for = small and negative [10.11]. Let us assume. e.g.

Im f(z)~z Pe”, (1.14)



