Wrox Programmer to Programmer

Model-Driven Development with

Executable UML

Dragan Milicev

Updates and Wrox technical support at www.wrox.com



Model-Driven Development
with Executable UML

Dragan Milicev

WILEY

Wiley Publishing, Inc.



Model-Driven Development with Executable UML

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Dragan Milicev

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-48163-9

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009927339

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.



About the Author

Dragan Milicev, PhD, is an associate professor at the Department of Computer Science at the University
of Belgrade, School of Electrical Engineering. He is the founder and CTO of Serbian Object Laboratories
d.0.0. (SOL, www.sol.rs), a software development company specializing in building software devel-
opment tools using model-driven technology, as well as in building custom applications and systems.
With 25 years of experience in building complex software systems, he has served as the chief software
architect, project manager, or consultant in more than 20 academic and international industrial projects.
Of note is the fact that he was Chief Software Architect and Project Manager for most of SOL’s projects
and all its products: SOLoist, a rapid application model-driven development framework for information
systems; SOL UML Visual Debugger, one of the world’s first UML visual debuggers, designed for the
Poseidon for UML modeling tool; and SOL Java Visual Debugger, a plug-in for Eclipse that enables mod-
eling of test object structures using UML object diagrams. He has published papers in some of the most
prestigious scientific and professional journals and magazines, contributing to the theory and practice of
model-driven development and UML. He is the author of three previous books on C++, object-oriented
programming, and UML, published in Serbia. You may contact him at dmilicev@etf.rs.



Acknowledgments

I would like to express my great debt of gratitude to Bran Selic, one of the pioneers and most respected
authorities on model-driven software engineering and key contributors to UML, whose careful and
thorough review of the manuscript and invaluable comments helped improve this book’s structure and
technical accuracy.

Special thanks to my colleagues from SOL who have been involved in the development of SOLoist and
its application to many industrial projects. Their contribution to the implementation of many ideas pre-
sented in this book, as well as their help in making the concepts indeed pragmatic and effective for
industrial systems, is deeply appreciated.

I would like to thank my research assistants, as well as my graduate and undergraduate students from
the University of Belgrade, School of Electrical Engineering, Department of Computer Science, who took
part in the research and development of some ideas and concepts presented in the book. They also offered
many valuable comments on the early drafts of the manuscript.

Many thanks to the companies where I have served as a consultant. I have enjoyed the opportunity to
brainstorm with colleagues and discuss many ideas presented in this book, as well as the opportunity to
apply the ideas in practice.

The work on the development and implementation of the approach presented in this book is partially
supported by the Serbian Ministry of Science, under the national program for technology development,
grant TR-13001.

Finally, I would like to express my boundless gratitude for forbearance, understanding, and support to
my beloved daughter, Mina, sons Milos and Jovan, and wife, SneZana, to whom I dedicate this book.



Preface

Logical complexity of software systems is one of the main factors causing problems and errors in their
planning, design, development, testing, deployment, maintenance, and use. There is a common under-
standing that building complex software systems requires careful planning, good architectural design,
and well-controlled development processes. Many good books and papers, as well as all software engi-
neering curricula, address this issue and yet, many software projects fail, miss their deadlines, or exceed
their budgets. Building or maintaining a complex system (be it software or not) is always connected to a
risk of mistakes and missed requirements, because humans (who are supposed to build the system) are
intrinsically prone to errors when handling too many details and interrelated components at a time.

However, logical complexity is not completely inherent to software systems. On one hand, there is an
inevitable component of complexity that is inherent to the very problem domain a software system
deals with. The term essential complexity refers to that part of logical complexity inherent to the prob-
lem domain, and not introduced by a solution or the implementation technology used for it. Essential
complexity is, thus, the “‘natural” part of complexity that cannot be removed and will exist in every
solution to a problem, simply because a simple solution to the problem does not exist. However, essen-
tial complexity stands in contrast to accidental complexity, which arises purely from the implementation
technology, tools, and methods applied in a solution. While essential complexity is unavoidable by any
approach chosen to solve a problem, accidental complexity is caused by that very approach.

One of the main tasks in software engineering as a discipline is to discover means to minimize accidental
complexity. Accidental complexity is to be minimized in any good software architecture, design, and
implementation.

Sometimes, accidental complexity can be caused by mistakes such as ineffective planning or project
management, or a low priority placed on a project. However, some accidental complexity always occurs
as a result of solving any problem. For example, the complexity caused by out-of-memory errors in many
programs is an accidental complexity that occurs because someone decided to use a computer to solve
the problem [Wiki].

Another significant cause of accidental complexity is a mismatching or immature technology or process
selected for the development of a software system. If the available technology (including the language
used for software development) requires the developer to write more words or perform more actions to
specify a design decision than is really necessary, the artifacts of the development will be accidentally
complex. Using an assembly language to implement a non-trivial algorithm, and using a file system
interface to build a database application are simple, extreme examples of such mismatching technology.
A less obvious example of such accidental complexity is when some code has to be written to specify that
a relationship between two objects has to be established when one object is dragged and dropped on the
other object. This can be done in an easier and more direct way, by demonstration.

For that reason, raising the level of abstraction of the technology used for development of software
systems, and doing so in a way that it better matches the problem domain of those systems, is one of the
basic means for guarding against accidental complexity. Raising the level of abstraction is one of the main



Preface

characteristics of the evolution of software engineering as a discipline. As Bran Selic once said, ““There has
been no revolution in software engineering since the invention of a compiler.” In other words, once we
understood that we did not have to talk to the computer in the language its hardware understands, but
rather we can do it in a language that is more suitable for us, and which can be automatically translated
into the language of the machine, we made the most significant breakthrough in software engineering.
Everything since then has basically been all about raising the level of abstraction of the language used to
program machines.

The point of raising the level of abstraction is to achieve better expressiveness. By using a language that
better matches the problem you want to solve, you can say more “facts” in fewer ““words.” This also
means that you can do more with less work. In addition, written words do not have to be the only way to
communicate with the machine. Pictures (such as diagrams), motions, and sounds (for example, spoken
words) have already been a mode of communication between humans and computer programs, so they
can be in software development, too.

This book contributes to the technology of developing one of many kinds of software systems, and
proposes a technique that can improve development efficiency by raising the level of abstraction and
reducing accidental complexity.

Model-driven development is one approach to raising the level of abstraction that has been successfully
exploited for more than a decade. Its basic premise is to use models instead of (solely) code to specify
software. Models are generally nonlinear forms, as opposed to code that is inherently linear.! Non-
linear means that models consist of elements that are interrelated in a manner that is freer than a simple
sequence where each element can have (at most) two adjacent elements. For that reason, models are
usually rendered using visual notations, such as diagrams, instead of pure text.

The software development approach described in this book is model-driven.

The Unified Modeling Language (UML) is a standard language that is used for modeling software. It was
proposed in the mid-1990s, and was first standardized in 1997. It is a general-purpose language aimed at
modeling all kinds of software systems.

The approach described in this book uses UML as the modeling language.? The book follows the defini-
tions and specifications given in the reference [UML2].

However, the scope of this book does not cover all kinds of software systems. Instead, it is limited to one
special kind of software systems known as information systems. The introductory part of this book defines
what is precisely meant by this term. In short, this book focuses on all those applications that have the
following properties:

U A complex conceptual underpinning — The applications rely on rather rich sets of concepts,
properties, and relationships from their problem domains.

"Note that code is a sequential form, because it represents a string of characters. Machines and humans read code in
a sequential order, one character after another. To improve its readability, machines render code in two-dimensional
viewports, but it is still inherently sequential.

2As of this writing, the latest UML standard is version 2.2. This book describes this version of UML and is based on
the reference [UML2].

xxii



Preface

O  Large-scale dynamic instantiation — During exploitation, the applications manipulate large
spaces of instances of their concepts and relationships. These instances are dynamically created,
modified, retrieved, queried, presented, and deleted. They are traditionally referred to as data
objects.

O  Persistence of the run-time space — The applications rely on what is conventionally called a
database behind.

Q  Interactivity — The applications intensively interact with users and/or other systems to accom-
plish their purpose through user or machine interfaces.

This book focuses on model-driven development of information systems using UML.

UML is not, however, a fully formal language. This means that its semantics are not defined in an unam-
biguous way in all its elements. For that reason, UML cannot be used as a language in the same way as
traditional programming languages, in which a specification of a software system can be unambiguously
interpreted by machines (for example, compiled and executed). In order to be such, a language must have
formal, unambiguous semantics — that is, a unique interpretation of each of its concepts that is supposed
to have run-time effects.

In addition, UML is a general-purpose modeling language that can be profiled for a specific domain of
problems. For example, standard UML leaves many so-called semantic variation points, which allow a
profile to interpret certain language concepts in several ways. A profile can also reduce the set of the
language concepts used in a particular problem domain, or extend the semantics of the concepts in a
controlled way. This way, a profile can customize the standard language so that it becomes fully formal
and, thus, executable. A model built in such a profile represents the implementation of the software at
the same time, and, because it can be executed, is not just an informal sketch of the design.

This book proposes and describes one new executable profile of UML for the described application
domain. It is but one of several existing profiles of UML with formal and executable semantics, specifi-
cally tailored for the domain of information systems.?

On one hand, the relational paradigm has been proven and widely accepted as the underpinning tech-
nology for building information systems. On the other hand, as another software-development paradigm
with significantly more abstract and expressive concepts, object orientation has been successfully used
for decades in programming. UML is one of the languages based on the object paradigm.

The marriage of object orientation with information systems development has been predominantly
accomplished by using object-oriented programming (OOP) languages to implement behavior (or the
so-called business logic) upon the underlying relational database, possibly accessed through a data per-
sistence layer that performs object-to-relational mapping. This approach has partially replaced the use
of fourth-generation programming languages that directly fit into the relational paradigm. At its current
stage of technical development, this widely used approach suffers from discontinuities in development
caused by incomplete or informal coupling of the object with the relational paradigm.

3For that reason, the term “‘executable UML" does not refer to any particular executable version of UML, but is rather
a generic term that denotes any formal and executable specialization of standard UML. One such executable special-
ization of standard UML is presented in this book.

Xxiii



Preface

This book discusses the problems of these technologies, how they affect development, and how they can
be overcome.

In short, this book explores the following:

Q A technology for rapid development of one kind of applications referred to as information
systems

Q  The use of the object paradigm and model-driven development of information systems

O  One executable profile of UML for model-driven development of information systems
Following are the goals of this book:

Q  To provide an in-depth tutorial on model-driven development and UML for building informa-
tion systems

Q  To show how information systems can be understood better and developed more efficiently
by using the object paradigm, model-driven development, and a profile of UML that is formal
and executable (rather than the relational paradigm or its incomplete coupling with object
orientation)

Note that this book is not any of the following:

0 A tutorial on, a reference specification of, or a textbook about the entire general-purpose
UML — This book does cover a major part of UML, but there are still parts of UML that are not
covered. Instead, the book focuses on the concepts and parts of UML that are most likely to be
needed in building information systems.

U A complete tutorial on the object paradigm or any traditional OOP language — However, this
book does describe the fundamental concepts of object orientation.

0 A complete tutorial on information systems or all the related technologies — Part V of this
book does, however, provide a condensed recapitulation of the main facts about information sys-
tems and the technology of their building, including their architectures, the relational paradigm,
entity-relationship, structured analysis, and SQL.

U A complete textbook on the development process of software systems in general, and infor-
mation systems in particular — Part IV of this book does, however, provide a quick practical
guide to the proposed development method.

U Abook that describes patterns or other techniques and building blocks for building informa-
tion systems — This book does not teach how to build information systems through the use of
complex, integrated examples and case studies. Instead, it teaches concepts and principles, using
many small, simple, and particular examples for illustration.

Whom This Book Is For

This book will be useful to software practitioners who analyze, specify, design, model, develop, or test
information systems. This book is for those who want to improve their knowledge and productivity by
exploiting model-driven rapid application development with an executable profile of UML. Readers who
might benefit include system analysts, system and software architects, designers, developers, and testers.

XXiv



Preface

The book will also be interesting to researchers who want to explore new software development strate-
gies, methods, and metaphors, especially model-driven development and programming by demonstra-
tion. The book introduces some new concepts and ideas that could be interesting to explore further.

This book can also be used as a textbook for higher-education courses on information systems, model-
driven software engineering, and UML.

The reader’s prior knowledge of the object paradigm or any of the OOP languages is a plus, but is not
necessary. This book gradually introduces the basic concepts and principles of object orientation.

Similarly, prior knowledge of the relational paradigm or any of the relational database management
systems (RDBMSs) and SQL is not essential, although it is desirable. Part V of the book summarizes these
topics for those who are not familiar with them. On the other hand, readers familiar only with these
topics will experience a paradigm shift.

Finally, prior knowledge of UML is not needed at all. The book is a complete beginner’s tutorial of (a
profile of) UML. However, experienced users of UML will also benefit from clarification of many vague
concepts of UML and their semantics.

The prerequisite for reading this book is general knowledge of programming. Knowledge and experience
in building information systems is a plus, although not essential.

How This Book Is Structured

The book is divided in the following parts:

Q  “Introduction” (Part I, Chapters 1-3) — This part quickly introduces information systems. It
then elaborates on traditional technologies of development of information systems and their
advantages and drawbacks. This part clearly indicates the main issues with the widespread use
of traditional paradigms for building information systems (most notably, relational modeling
or entity-relationship modeling), or with incomplete coupling of object orientation (and OOP
languages) with relational modeling. The analysis provides the motivation for the approach pre-
sented in the book.

Q  ”An Overview of OOIS UML" (Part II, Chapters 4-6) — This part is a quick overview of the
executable profile of UML proposed in this book, referred to as the OOIS UML profile. This part
quickly presents the main concepts and ideas that will be described in more detail later in the
book.

0  “Concepts” (Part III, Chapters 7-16) — This central part of the book thoroughly explains the
concepts of OOIS UML and their semantics.

Q  “Method” (Part IV, Chapters 17-19) — This part provides a quick guide to the proposed
method for applying the OOIS UML profile for building information systems.

U  “Supplemental” (Part V, Chapters 20-24) — This part provides auxiliary tutorial material for
the traditional technology that is widely used for building information systems nowadays, and
that is not essential for understanding the main parts of the book. The supplement includes a
summary of the general characteristics of information systems, some basics of software engi-
neering processes, the relational paradigm, entity-relationship modeling, structured analysis,
and general principles of the object paradigm. These tutorials are provided for the convenience

XXV



Preface

of the interested readers who are not familiar with these topics and traditional technologies, or
as quick reminders for those who are experienced with them.

If you are familiar with the notion of information systems and the traditional technology of their devel-
opment (including relational databases and entity-relationship), you can simply read the book from its
beginning. In the first three chapters of the book, you will find an analysis of the issues that you have
probably faced in your work. You will also find explanations of the causes of the issues, while the central
part of the book will provide solutions.

If you are not familiar with these traditional technologies, you can still start reading from the beginning.
However, you can also skip to the supplement to gain some basic knowledge of the technology you do
not know well. However, this knowledge is not essential for understanding of the main part of the book.

Finally, if you are just eager to see what this book is all about, and the new and original information
contained herein, simply read Part Il and you will get the main idea. Then you can go back or forward as
you like.

About the Supporting Software and the
Accompanying Site

The method described in this book can be applied even without full-fledged tool support. The author
has taken part in several successful industrial projects where only customized off-the-shelf or ad hoc
developed tools were used to partially support some activities in the approach (such as UML modeling
tools, customized code generators, and object-to-relational mapping frameworks). Even without full-
fledged tool support, the proposed approach can boost the productivity and improve the quality of
the produced software because of the raised level of abstraction, better expressiveness of the modeling
language and its semantics, clear architecture of the software system, and a well-controlled development
method.

However, obviously, the full benefit of the proposed approach can be reaped only with strong and full-
fledged support of computer-based tools. There can be many different implementations of the proposed
UML profile with the appropriate tool support. The author is the inventor and has served as the chief
architect of one such tool, named SOLoist*, which has been developed for and successfully applied to a
wide variety of industrial projects since 2000, and which supports many concepts described in this book.

See www . ooisuml . org for more discussion about the profile and the method presented in this book, their
open issues and further improvements, as well as their implementations and applications to real-world
projects.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

4SOLoist is a trademark of Serbian Object Laboratories d.0.0. (SOL)

XXVi



Preface

0  Each section of the book ends with a summary enclosed in a box like this.

As for styles in the text:

Q  We highlight new terms and important words when we introduce them.

QO  We show keyboard strokes like this: Ctrl+A.

Q  We show filenames, URLs, and code within the text like so: persistence.properties.
a

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting and underlining to emphasize code that is of particular
importance in the present context.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake or
faulty model fragment), we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and, at the same time, you will be helping us to provide even higher
quality information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
(including links to each book'’s errata) is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ““your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies, and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

XXvii



Preface

Go to p2p.wrox.comand click the Register link.

Read the terms of use and click Agree.

Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

> Wb PR

You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P. However, in order to post your own messages,
you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXViii



Contents

Preface xxi
Part I: Introduction
Chapter 1: Information Systems Modeling 3
Definition of Information Systems 3
Models and Modeling Paradigms, Languages, and Tools 5
Modeling 5
Modeling Languages 6
Modeling Tools 9
Modeling Paradigms 9
Processes and Methods 12
Chapter 2: Traditional Approaches to IS Development 15
Characteristics of Traditional Modeling Paradigms 16
Usability Aspects 17
Development Aspects 19
Scope Discontinuities 20
Semantic Discontinuities 21
Development Phase Discontinuities 22
Implications of Discontinuities 22
User-Interface Development Problems 22
Chapter 3: The Object Paradigm 25
Object-Oriented Modeling 25
The Unified Modeling Language 27
Characteristics of UML 28
Profiling UML 30
Traditional 00 Development Approach 31
Desired Characteristics of Object-Oriented Information Systems 33



Contents

Usability Aspects 34
Development Aspects 36
The Rest of This Book 37
Part 1I: Overview of O0IS UML
Chapter 4: Getting Started 41
Key Features of 00IS UML 41
The Organization of 00IS UML 44
Chapter 5: Basic Language Concepts 49
Classes and Attributes 49
Requirements 49
Concepts 50
Interactive Manifestations 56
FAQ 58
Associations 62
Requirements 62
Concepts 62
Interactive Manifestations 66
FAQ 68
Generalization/Specialization Relationships 69
Requirements 69
Concepts 69
Interactive Manifestations 74
FAQ 75
Operations 76
Requirements 76
Concepts 76
Interactive Manifestations 82
FAQ 83
Polymorphism 84
Requirements 84
Concepts 84
Interactive Manifestations 85
FAQ 86
Consistency Rules 86
Requirements 86
Concepts 87
Interactive Manifestations 91
FAQ 93

Xii



Contents

Chapter 6: Interaction and Querying 97
Customizing Presentation 97
Requirements 97
Concepts 98
Interactive Manifestations 104
FAQ 106
Customizing Behavior 108
Requirements 108
Concepts 109
Interactive Manifestations 124
FAQ 125
Querying 128
Requirements 128
Concepts 128
Interactive Manifestations 135
FAQ 137
Part llI: Concepts
Chapter 7: General Concepts 141
The Dichotomies of 00IS UML 141
Specification/Realizations and Classifier/Instances Dichotomies 141
Modeling and Execution 142
Compilation and Interpretation 143
Basic and Derived Concepts 144
Formal and Informal Concepts 145
Structure and Behavior 146
Core and Extended Parts 146
Model Elements and Diagrams 147
General Language Concepts 151
Elements and Comments 151
Packages 152
Namespaces and Visibility 155
Dependencies 167
Multiplicity Elements 171
Chapter 8: Classes and Data Types 181
Common Characteristics of Classes and Data Types 181
Notions of Class and Data Type 181
Classes and Data Types as Classifiers 183

Xiii



Contents

Discriminating Characteristics of Classes and Data Types 185
Identity 185
Features 193
Copy Semantics 197
Lifetime 198

Creation and Destruction of Instances 199
Actions 199
Constructors 206
Creational Object Structures 210
Destructors 234
Propagated Destruction of Objects 236

Data Types 240
Primitive Data Types 241
Enumerations 242
Built-in and User-Defined Data Types 244

Chapter 9: Attributes 247

Attributes as Structural Features 247
Attributes as Multiplicity Typed Elements 248
Static Attributes 250
Read-Only Attributes 252
Frozen Attributes 255
Derived Attributes 255
Redefinition of Attributes 260

Actions on Attributes 263
Read Attribute Actions 264
Write Attribute Actions 268
The Symbol null 274
Freezing and Unfreezing Attributes 275
Iterations on Attributes 276
Access to Slots Through Reflection 277
Implementation in Other Detail-Level Languages 278

Chapter 10: Associations 281

Binary Associations 281
Binary Associations and Links 281
Association Ends and Properties 284
Semantics of Binary Associations and Association Ends 287
Special Characteristics of Association Ends 294
Actions on Binary Associations 319

N-ary Associations 331

Xiv



