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PREFACE

The objective of this volume is to present a comprehensive coverage of the evidence
that oxidoreductase enzymes in the plasma membranes of animal cells play an important
role in control of cell growth and to further examine how the oxidoreductase enzymes may
influence control of membrane transport. Although isolated experiments in plasma membrane
electron transport can be found as far back as 1929, it is only in the last 15 years that a
systematic study has begun on the clear determination of the widespread existence of unique
plasma membrane oxidoreductase enzymes. As evidence for the presence of plasma mem-
brane redox enzymes solidified, experiments were designed to show potential roles in growth,
development, and membrane transport.

At least twenty laboratories around the world have been involved in current studies of
plasma membrane oxidoreductase enzymes in animal cells, and even more have worked
with plants. The results of these investigations are mostly scattered throughout the literature
except for two recent books that contained reports presented at meetings. As a result, it is
difficult to evaluate the scope of research which supports the general concept of plasma
membrane oxidoreductase enzymes and the evidence which is developing for their contri-
bution to cell function. We hope that these volumes will help to consolidate this basic
information. We also expect that these books will serve to emphasize that much more research
is needed to understand the inner workings of the electron transport enzymes, how they help
to control the cell cycle, where they contribute to transport systems, and their ubiquitous
occurrence in living cells. Beyond basic understanding, lies the practical significance which
may be revealed in changes in these enzymes in tumor cells and control of the enzymes by
antitumor and antimalarial drugs and neuromodulators.

The chapters are organized to present first the basic observation of plasma membrane
oxidoreductase activity and the unique properties of these enzyme activities, especially with
respect to selective inhibitor and hormone response. The next chapters consider the stimu-
lation of cell growth by transplasma membrane electron transport. This discussion of growth
control leads to examination of transmembrane iron and ferric transferrin reduction and its
relation to transferrin receptor involvement in growth control. The last chapters consider the
effects of plasma membrane electron transport on physiological functions of cells which
could be involved in growth control and the relation of the redox system to antitumor drug
action and response to neurotransmitters.

The material presented in this book is only half of the story of plasma membrane
oxidoreductases. Enzymes of similar character are also present in plant plasma membranes.
A discussion of these enzymes and their relation to plant growth will be presented in a
second volume.

We very much appreciate the efforts of the contributors who have taken the time to
prepare chapters which present a comprehensive view of the subject. We also thank Janet
Hollister for skillful help in assembling the final copy and Annika Lindgren and Monica
Isaksson for preparation of figure copy.

Frederick L. Crane
D. James Morré
Hans Low
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2 Oxidoreduction at the Plasma Membrane

I. RECOGNITION OF PLASMA MEMBRANE
OXIDOREDUCTASES

The comprehensive study of oxidoreduction reactions in the plasma membrane has been
a recent development. It is known now that there are oxidoreductase enzymes on the inner
face, the exterior face, and crossing the membrane. Evidence is growing for significant
functions for these enzymes.'° Preliminary observations of these oxidoreductases can be
traced back to the 1920s, but many of these early observations seem to have faded out of
sight before they could stimulate a major investigation into the nature and significance of
the oxidoreductases in the plasma membrane.

There are six major lines of investigation which led into the concepts of redox function
in the plasma membrane and its functional significance (Table 1). These areas include:

1.  Studies of oxidation-reduction reactions of whole cells with impermeable oxidants
indicating electron transfer across the plasma membrane: the logical development of
this observation would have been study of oxidoreductases in isolated plasma mem-
brane but this was difficult because highly purified plasma membranes were hard to
prepare and the oxidoreductase activity in contaminating mitochondrial or endoplastic
reticulum membranes overwhelmed any plasma membrance activity. The mammalian
erythrocyte membrane was a special case because the absence of internal membranes
precluded contamination of plasma membrane preparations by other membranes. This
led to early studies of redox functions with these membranes, but the primary emphasis
was on known extensions of endoplasmic redox function such as NADH cytochrome
c reductase'® and methemoglobin reduction,''!> which represents a useful function of
this enzyme in erythrocytes.

2.  Stimulation of cell growth by external oxidants: although Brooks’ studies in 1947'
could have opened up this area of research, there seems to have been no further
development until evidence for transplasmalemma electron transport stimulated a new
study by Ellem and Kay in 1983'* on using ferricyanide as an external oxidant to
stimulate growth.

3.  The study of salt respiration in plants led to proposals that plasma membrane redox
enzymes could provide energy for ion uptake directly without mediation by ATP.'?
The impetus for these studies was decreased by development of evidence for ATPases
to drive transport. New interest developed with evidence for redox effects on amino
acid transport. Suggested relations between redox and gastric acid secretion have
always been in the background.

4.  Evidence that the pigments responsible for response of plants to blue light are located
in the plasma membrane:'® this reaction has specific control function for plant and
fungal cells. Questions about plasma membrane purity led to debate about location in
the cell.

5.  The respiratory burst of leucocytes with consequent hydrogen peroxide production to
kill engulfed bacteria led to investigations of the oxidase reaction and evidence for its
location in the plasma membrane.'’

6.  External peroxide production in the wall of plant cells has long been related to lignin
formation in the cell wall. Peroxidases associated with this peroxidation are bound to
the surface of the plasma membrane.'®

The studies by Voegtlin, Johnson, and Dyer in 1925 were designed to examine a relation
between the protoplasmic redox state and cancer,'® a subject which later attracted others such
as Warburg.? In their studies, they used both permeable and impermeable oxidoreduction
indicator dyes to assess the reduction rate by normal cells and tumor cells. They used a very
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Indigodisulfonate reduction

FIGURE 1. Reduction rate of indigo disulfonate exposed to rat tissue rats
showing the time taken for the rat to decolorize. (Calculated from data in
Reference 19).

simple experimental procedure to determine redox capacity. The time it took to decolorize
the dye with a tissue suspension under anaerobiosis was determined and expressed as time
to decolorize: in general, the higher the redox potential of the dye, the faster the rate of
decolorization (reduction). Both permeable and impermeable dyes were reduced by the cells
from all tissues, but the rate of reduction was clearly different from tissue to tissue. In
looking at overall dye reduction, including both permeable and impermeable dyes, there
was no apparent difference between Flexnor-Jobling tumor tissue and normal liver tissue.
If the results of these experiments are considered on the basis that the impermeable dyes
measure transplasma membrane electron transport whereas permeable dyes are reduced by
many redox systems inside the cell, interesting observations relating to plasma membrane
redox are possible. With impermeable indigo disulfonate the reduction rate by Flexnor-
Jobling tumor can be half the rate of the one observed with liver (or two times faster than
lung). The fact that the impermeable dyes are reduced is in itself good evidence for some
type of electron transfer across the plasma membrane and the reduction of indigo disulfonate
indicates electron transfer at a relatively low potential (—125 mV) (Figure 1).

Experiments to determine the toxicity of dyes by injecting them into rats gave further
evidence for the difference between permeable and impermeable dyes. The impermeable
dyes, even though reduced, show very little lethality. They do produce respiratory problems.
The permeable dyes were rapidly lethal. This would be consistent with rapid oxidation of
cytosolic reductants such as NADH, NADPH, and glutathione, as well as interference with
mitochondrial ATP production by the permeable dyes. The impermeable dyes would give
a more selective oxidation of cytosolic reductants by electron transfer across the plasma
membrane and would not interfere with mitochondrial ATP production by short circuiting
the electron transport chain.

The comparison of effects of permeable and impermeable dyes was more fully developed
in experiments on starfish eggs by Barron and Hoffman in 1927.?' They used autooxidizable
permeable and nonpermeable dyes to test for effects on oxygen uptake. The permeable dyes
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stimulate oxygen uptake at low redox potential which is consistent with electron donation
by cytosolic redox compounds like NADH or glutathione with redox potentials in the range
of —320 to —280 mV. Increased oxygen uptake was only found with high potential im-
permeable dyes. Gallocyanine (59 mV) gave increased oxygen uptake whereas indigo-
disulfonate (— 125 mV) had no effect. They came to the clear conclusion that impermeable
dye reduction would involve a transplasma membrane electron transport with a component
of midpoint potential above — 125 mV at the cell surface. It should be noted that restriction
of reduction to a redox potential that high would preclude direct reduction by leakage of
glutathione or NADH out of the cell, but not ascorbate (+ 59 mV). The difference between
indigo-disulfonate reduction by rat liver cells and lack of reduction by sea urchin eggs may
also indicate a difference between external reduction sites in different organisms.

The cytochromes had been rediscovered in 1923—1933 by Keilin*? and Warburg?* as
components of the major cyanide sensitive respiratory chain. The role of ATP in energy
transfer reactions was developed by Lipmann® in 1939—1941 and the Krebs cycle was
proposed in 1937.% Only in 1948 was the combined respiratory system and Krebs cycle,
or cyclophorase, proposed by Green®® and identified with mitochondria by Kennedy and
Lehninger.” These studies focused the major attention in respiratory activity and especially
energy-coupled respiratory activity on the mitochondria. The primary mechanism for energy
transfer from both glycolysis and mitochondrial oxidation was recognized as ATP. There
was thus no obvious basis to look for redox systems in the plasma membrane to energize
any function. The presence of significant membrane-bound redox function not involved in
energy transfer, such as the cytochrome b fatty acyl desaturase system and the detoxification
system with cytochrome P450, was not developed until 1960s.2®

In 1945, Lundegardh® proposed a special cytochrome system in plant cells that would
directly drive ion uptake. To provide direct coupling between the electron transfer and ion
transport, this redox system should have been located in the plasma membrane (Figure 2).
Without isolated plasma membranes, the identity of the cytochrome changes which responded
to addition of salts was difficult to establish.*® The well-known salt respiration could not
clearly be differentiated from mitrochondrial respiration. In 1948, Conway and Brady>!
proposed a plasma membrane redox system as a basis for gastric secretion which would be
directly coupled to proton pumping. During this period, until 1968, Robertson*? also in-
vestigated salt respiration and developed further evidence of its unique properties, but a
clear definition of a plasma membrane redox system was not possible, primarily because
isolation of sufficiently purified plasma membranes was not possible.

In 1954, Manyai and Szekely®*® showed that ferricyanide, which was impermeable to
erythrocytes, caused an increase in ATP inside erythrocytes. This implied a possible redox
function in the plasma membrane coupled to ATP formation since these cells lack mito-
chondria. Later studies indicated that the increase in ATP could come from activation of
glycolysis by increase in NAD or NADP by oxidation of NADH or NADPH. The oxidation
of NADH or NADPH would provide an acceptor to activate glycolytic activity.>* Only 10
years later, Dormandy and Zarday** showed that erythrocytes reduce ferricyanide. They also
showed that ferricyanide reduction was directed to proton release, and that this activity was
stimulated by insulin. It was at this time (1965) that Mitchell proposed the chemiosmotic
hypothesis as the basis for coupling electron transport and transmembrane proton movement
to ATP formation in mitochondria* (Figure 3). The Mitchell hypothesis was cited by Mishra
and Passow in their discussion of possible functions for the plasma membrane ferricyanide
reductase when they demonstrated ferricyanide reduction by erythrocytes and associated
ATP formation in 1969.3¢

The clearest demonstration of plasma membrane NADH dehydrogenase activity was
made by Zamudio and Canessa®’ with erythrocyte membranes. They showed very active
NADH ferricyanide reductase activity. Later, Zamudio et al.*® showed that nitroblue tet-



