Garland Science

B = -V .0,E+V-[(D, — D_)2F Ve,

V2E+ V2(’._ + ET(’)T Vf’_ e VE+

) RT & ¢y (0%)

= 41
P &y (07)
ca(07)) _
sl . (6%) =
RT 7'” J ; {f;) 5 I)/F
-}.‘/;ZA@&H*F(F)M (_ n - () = pml
g : ki

Donnan

4
A
QI) 8ul,, A[)

ALAN J. GRODZINSKY



Fields, Forces, and Flows
in Biological Systems

Alan J. Grodzinsky

With the technical and editorial assistance of Dr. Eliot H. Frank

zﬁ ‘i)\f} t':v:’

1w

Garland Science

Taylor & Francis Group
LONDON AND NEW YORK



Garland Science To Gail and Michael
Vice President: Denise Schanck

Editor: Summers Scholl

Assistant Editor: Alex Engels

Production Editors: Mac Clarke and Georgina Lucas

Cover Design: Andrew Magee

Copyeditor: Mac Clarke

‘Typesetting: TechSet

Proofreader: Sally Huish

©2011 by Garland Science, Taylor & Francis Group, LLC

This book contains information obtained from authentic and highly regarded
sources. Reprinted material is quoted with permission, and sources are
indicated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information and to acknowledge original
sources. The author and publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the copyright holder.

ISBN 978-0-8153-4212-0

Library of Congress Cataloging-in-Publication Data
Grodzinsky, Alan J.
Fields, forces, and flows in biological systems / Alan J. Grodzinsky; with the
technical and editorial assistance of Eliot H. Frank.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-8153-4212-0 (hardback)
1. Biological transport. 2. Biological systems. I. Frank, Eliot H. II. Title.
QH509.G76 2011
571.6’4-dc22 2011000915

Published by Garland Science, Taylor & Francis Group, LLC, an informa business,
270 Madison Avenue, New York NY 10016, USA, and
2 Park Square, Milton Park, Abingdon, OX14 4RN, UK.

Printed in the United States of America
1514 131211 10987654321

Garland Science
Taylor & Francis Group

Visit our web site at http://www.garlandscience.com



Fields, Forces, and Flows
in Biological Systems



Preface

SCOPE AND PURPOSE

This textbook describes the fundamental driving forces for mass trans-
port, electric current, and fluid flow as they apply to the biology and
biophysics of molecules, cells, tissues, and organs. Basic mathemati-
cal and engineering tools are presented in the context of biology and
physiology. The chapters are structured in a framework that moves
across length scales from molecules to membranes to tissues. Examples
throughout the text deal with applications involving specific biological
tissues, cells, and macromolecules. In addition, a variety of appli-
cations focus on sensors, actuators, diagnostics, and microphysical
measurement devices (e.g., bioMEMS/NEMS microfluidic devices) in
which transport and electrokinetic interactions are critical.

The book is written for beginning graduate students and advanced
undergraduates and is aimed at an audience that has seen basic fresh-
man physics (mechanics, electricity, and magnetism) as well as under-
graduate exposure to differential operators and differential equations.
In addition, it is hoped that the textbook will be a valuable resource
for interdisciplinary researchers, including biophysicists, physical
chemists, materials scientists, and chemical, electrical, and mechanical
engineers seeking a common language for the subject.

PHILOSOPHY OF THE TEXTBOOK

A primary objective of this text is to integrate the fundamental princi-
ples of transductive coupling between chemical, electrical, and mechan-
ical forces and flows that are intrinsic to transport within biological
tissues, membranes, macromolecules, and biomaterials. These prin-
ciples are applied and interpreted in the context of state-of-the-art
discoveries and challenges in biology, physiology, and macromolecu-
lar science. Thus, a balanced presentation of selected, basic principles
from chemical, electrical, mechanical, and materials engineering and
science is intended, in order to establish a common language for bio-
logical and biomedical engineering students, rather than the disparate
languages often used by chemical, electrical, or mechanical engineers
alone. However, this text is not intended as simply a compilation
of examples in which traditional engineering techniques are applied
to problems in physiology. Rather, current problems in biology and
biophysics are used to motivate quantitative engineering approaches
applicable from the nanometer length scale of biomacromolecules up
through the complex structural organization of tissues and organs.
While the global aim of bioengineering curricula is to integrate
engineering fundamentals with modern biological and medical science,
the underlying interdisciplinary nature of the engineering components
themselves can be a blessing and a curse. Some specialized texts by
necessity are focused on one or two engineering disciplines connected
to physiology. However, there is also a need for foundational bioengi-
neering courses and texts that are cross-disciplinary even within the
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engineering fundamentals. The topic of transportis an ideal medium in
which to achieve this objective.

At the same time, this text is not focused on transport alone. Rather,
our objective is to describe more broadly the intra- and intermolecu-
lar fields and forces that affect the biology, physiology, and biophysics
of molecules, cells, tissues, and organs. Most biological tissues and
macromolecules (e.g., proteins, polysaccharides, and nucleic acids) are
electrically charged under physiological conditions. Therefore, it is
necessary to describe electrical forces and interactions from first prin-
ciples, just as fundamentals laws are needed to describe fluid velocity
fields and chemical transport. In this way, electrical interactions at mul-
tiple length scales can be addressed on an equal footing with forces that
derive from local chemical and mechanical gradients. Thus, electrical
forces at the nanoscale are fundamental components underlying the
integration of molecular structure and biochemistry with tissue-level
mechanics, transport, biophysics, and biology.

ORGANIZATION OF THE TEXTBOOK

The organization of the book derives from the order of major top-
ics covered in the MIT Biological Engineering core curriculum subject:
chemical transport in electrolyte media (Chapter 1); electrical fields and
electrochemically mediated transport (selected sections from Chapters
2 and 3), the concepts of stress and the stress tensor (the early sec-
tions of Chapter 4); fluid mechanics and convective transport (Chapter
5): and integrative case studies involving physicochemical interactions
at the macromolecular and cellular levels (examples in Chapter 4) and
electrokinetic examples fundamental to MEMS and physical chemistry
(Chapter 6). At the same time, many sections in Chapters 1, 4, and 7 are
also essential components of MIT’s undergraduate and graduate courses
in molecular, cellular, and tissue biomechanics, including the rheologi-
cal and deformational behavior of tissues and gels. Thus, the coverage
of the textbook is broader than that used solely in a one-term course,
and is intended to allow flexibility in choosing the order and content to
adapt to the breadth of topics and courses of interest to biological and
biomedical engineering students and instructors.

The course at MIT has evolved over many years, and is now typi-
cally taken each term by students in biological engineering, mechanical,
chemical, and electrical engineering, materials science and engineer-
ing, and other departments. Thus, while each student has seen aspects
of some of the material, none has seen the breadth of topics covered,
and therefore no assumptions are made concerning the students’ back-
ground, except for exposure to undergraduate-level mathematics and
physics. Pedagogically, starting with chemical transport enables the
mathematical treatment to focus initially on diffusion of a scalar (solute
concentration) before the added complexities of dealing with vector
fields (fluid velocity and electric fields). The spirit of the course is such
that the instructor focuses each lecture using a current problem from
the biological or medical literature, and then uses the text material as
the fundamental basis for discussing, modeling, and critically analyz-
ing and interpreting the results. The numerous examples and homework
problems in the book are used by the students to gain additional experi-
ence and further insight. A solutions manual and figures from the book
are available to qualified adopters of the text, and additional homework
problems will be available to students on the book web site.
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Chemical Transport in
Electrolyte Media

1.1 INTRODUCTION

We first consider the diffusive motion of solutes in a fluid electrolyte
medium. Low- and high-molecular-weight solutes are of interest, from
mobile ions and small electrically neutral solutes to proteins, nucleic
acids, glycoproteins, proteoglycans, and biological and chemical phar-
maceutical compounds. Concentration gradients of such solutes will
cause diffusive solute flow within and across biological tissues, cell
membranes, and intracellular and extracellular spaces, and through
hydrogels and other porous biomaterials. Fundamentally, diffusion is
the transfer of a chemical species from regions of higher concentra-
tion to those of lower concentration by the mechanism of random
Brownian motion of individual molecules within an ensemble [1-3]. Dif-
fusive processes have also been thoroughly treated regarding carrier
motions in semiconductor and solid state materials, gaseous media,
and the general description of transport provided by nonequilibrium
thermodynamics [4-6].

In this chapter, solute flux results solely from the presence of solute
concentration gradients within the electrolyte medium. For the case of
charged solutes, the additional electrical migration flux caused by the
direct action of an applied electric field will be treated in Chapter 3.
Since biological tissues and biomaterials contain fixed-charge groups
that induce local, built-in electric fields (“self-fields”), solute migration
fluxes will also need to be included in that discussion. The motion
of solutes associated with convection of the fluid solvent are intro-
duced in Chapter 5 after a more detailed treatment of Newtonian fluid
mechanics.

After considering both a continuum and a molecular view of diffu-
sive motions along with conservation of species (Sections 1.2 and 1.3),
the concepts of boundary conditions and the solution of boundary
value problems defined by the diffusion equation are introduced (Sec-
tion 1.5). The importance of solute binding to cell surface receptors,
extracellular matrix, and biopolymers in general is included in the
context of specific examples in Section 1.4, leading to a discussion
of diffusion-reaction rate processes and kinetics in Section 1.6. The
ionization of biomolecular charge groups associated with acid-base
reactions provides another important set of examples of diffusion—
reaction in biological systems. This provides the opportunity to intro-
duce key macromolecular constituents of the extracellular matrix
(Section 1.4).

1.2 DIFFUSIVE FLUX AND CONTINUITY

Within an electrolyte medium, empirical evidence has shown that the
diffusive flux N; of solute species i with respect to the solvent is
often linearly related to the local gradient in the concentration of
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Ni(r.1)

n; da

Figure 1.1 A control volume V is
enclosed by a surface S. An area
element on the surface has unit
normal n, so that a differential area
vector can be defined as da = nda.
N;(r,t) is the outward flux across
the surface.

that species, cj, by
N;=—-D;V¢; Q1 .1)

where D; is the diffusivity and the parameters in (1.1) have the SI units:
N; = molar flux (molm—2s-1)

¢; = molar concentration (molm=-3)

D; = diffusivity (m?s~!)

In cartesian coordinates, V = ixd/dx + iyd/dy + i,0/3z (i; being the unit
vector in the jth direction; see Appendix B for definitions of V in other
coordinate systems). The flux equation (1.1) can be regarded as a phe-
nomenological constitutive law, often referred to as Fick’s first law of
diffusion (1855). The linear form of (1.1) corresponds to the case of a
dilute solution in an isotropic medium, D; being independent of con-
centration. A tensor form of the diffusivity would apply for anisotropic
media [3]. We will see in later chapters that additional flux terms are
added to (1.1) to account for solute motion caused by convection of the
solvent as well as the motion of charged solutes in the presence of an
electric field (the electrical migration flux).

1.2.1 Continuity of Solutes with Respect to a Stationary Fluid

Having established the basic point-by-point constitutive relation
between the solute flux and the local solute concentration gradient,
(1.1), we now use the integral form of continuity (conservation) to
describe the global relation between solute accumulation in a region
of space, the net flux of solute entering the region, and the rate at which
solutes are generated or lost by chemical reaction within that region.
The stationary control volume of Figure 1.1 is enclosed by the surface
S, and the outward flux of solute species i is denoted by the vector N;.
The continuity law then takes the form

ij c,-dV=—<J§ N,-~nda+J R; dV (1.2)
dt Jy S 1%

where the left-hand term is the net accumulation of solute in V, and
the minus sign in front of the surface integral on the right corresponds
to net flux crossing into the control volume. R; (molm~3s-1) is the net
volume rate of formation of species i by chemical reaction. The volume
V and surface S are assumed to be fixed in space.

“Flux” versus “flux density”, a word on nomenclature: The “net flux” of
species through the surface S in (1.2) corresponds to the closed surface
integral of N - da. Therefore, N is strictly the “flux density” of the solute,
as used in [7]. However, in much of the literature on mass transport and
electrochemical systems, N is simply referred to as the “flux,” and we
will therefore use that nomenclature throughout. We note this to antic-
ipate any confusion on this point in other subsystems. For example,
we will see in Chapter 2 that Gauss’ law in the electric field subsystem
involves the integral of €E - da around a closed surface, which is called
the “net electric flux,” and ¢E is then called the (electric displacement)
“flux density.”

From (1.2), we can then derive the point-by-point differential form of
continuity by using Gauss’ theorem,

%Ni-ndazg V.N,dv (1.3)
S Y4
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and noting that the time derivative of the left hand term of (1.2) can be
brought inside the volume integral since V and S are stationary:

JaCj

JV<¥+V-N,-—R,-)dV=0 (1.4)

Since the volume element dV is arbitrary, we can set the sum of the
integrands in (1.4) to be zero, giving the differential form of continuity
in the absence of convective or electrical forces:

d9C;j
a—;:—V-N;-}-R,' (1.5)

Combining the flux constitutive law (1.1) with the continuity law (1.5)
in the absence of chemical reactions gives

ac;
3t—’=v.(DiVCi) (1.6)

For cases in which D; is a constant independent of position, (1.6) gives
the classic form of the diffusion equation (Fick’s second law):

ac;
3—; =D,'V2C,' (1.7)

where the Laplacian operator in Cartesian coordinates is V2c=
3%c/0x? + 3%c/dy? + 9%c/0z2, and thus the one-dimensional form of the
diffusion equation is

dCj 32C,'
— =D;— 1.8
at "ox2 (1.8)

1.2.2 Continuity of Solutes with Respect to a Moving
Deforming Fluid

We will often have occasion to consider the coupling of electrical,
mechanical, and chemical processes occurring in a multicomponent
system consisting of a fluid and several distinct chemical species. In
formulating the governing laws or equations of change, it is often con-
venient to focus on a volume of fixed identity that may be moving and
deforming. A continuity law must be written for each chemical species
that, along with the relevant laws of motion and electromagnetism,
serves to uniquely characterize the system of interest. For example,
we might be interested in characterizing a small volume of fluid mov-
ing in the extracellular space of a deforming tissue and then modeling
the diffusion of proteins out of the volume. A simpler case is pictured
in Figure 1.2, which depicts a volume of water containing a dilute ionic
solution. We wish to write a continuity law relating the time rate of
change of electrolyte ions in V to the flux of ions through the surface S.

Defining a volume of fixed identity can be subtle. In a mixture such as
that in Figure 1.2, each species has a different velocity—a situation not
encountered in viscous fluid flow or heat conduction problems. One
must first choose a relevant local material velocity for the mixture, a
velocity with respect to which the motion of the volume V and surface S
can be defined. Typical choices that are used in the membrane filtration
literature [8], as well as that of general mixture theory in the study

3

Figure 1.2 A moving, deforming
volume of fluid V, with the
associated closed surface S.
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of transport phenomena [9], are the mass-averaged velocity v or the
molar-averaged velocity v:

v= ‘;Z"”l")'f" (1.9)
i Pi

g _ZZ"CL'_"' (1.10)
i Ci

where p; is the density (kgm~—3 in SI units) and ¢; is the molar concen-
tration (mol m—3) of the ith species.

In aqueous electrolyte media, the velocities (1.9) and (1.10) can be
well-approximated by that of the solvent, water. For example, v for a
0.15M NaCl solution becomes

o — NaPNa + Cci¥cl + CH,0PH,0

(1.11)
CNa + Ccl + CH0

With ¢y,0~55M (=1000gL"!/18 gmol~!)>» 0.15M, and considering
relevant velocity magnitudes, v = (¢cH,0vH,0)/CH,0 = VH,0 in (1.11) if
there is any reasonable fluid convection at all. (In mixtures of gases,
the average velocities do not reduce to such a simplified result, and the
choice of reference frame (local velocity) is usually one of convenience.)

With the results of (1.11), we can return to Figure 1.2 and define the
volume of fixed identity, V. The convecting fluid provides the best ref-
erence frame, and V is therefore delineated by always following the
same water molecules in the ensemble. If the molecules of interest were
labeled, we would always be sure of following the given volume. In
actuality, the statistical fluctuation of the water molecules results in a
continual exchange of molecules back and forth across S, so that the
volume of “fixed” identity must be defined within a statistical context.
With this in mind, we write the continuity law relating the time rate of
change of solute in V to the flux of solute through S using the integral
form

d

—J cdv=— N/,-~nda+J R; dV (1.12)
dt Jy S(h) V()

where N is the flux of the ith species across S and R (molm~3s71) is
the volume rate of its formation due to chemical reactions. The volume
and surface are both time-dependent, as indicated in (1.12); thus, Nj
with respect to the moving, deforming surface S is given by

N, =-D;V¢; (1.13)

We now use the result of an integral theorem (see Appendix A) that
prescribes mathematically how to evaluate the time rate of change of
a volume integral when the volume is a function of time. From (A.9) of
Appendix A with ¢ = ¢j,

d aCj
a ch:J %G av+d  cv-nda (1.14)
dt JV(t) ; v ot S(t) v

where v is the fluid velocity, i.e., the velocity of the deforming surface.
Equations (1.12) and (1.14) can be combined, Gauss’ theorem being used
to convert the closed surface integrals to volume integrals, resulting in
a differential statement of continuity for the ith species,

aCj

W:—\7-IV/I~—V-C,'lh}—R,’ (1.15)



1.3 A MOLECULAR VIEW OF DIFFUSION

Expansion of the second right-hand term of (1.15) gives
V.(jv)=v-Vci+¢V-v (1.16)

For the most part, we will be dealing with incompressible liquids, for
which a physical statement of conservation of mass is (see Chapter 5)

V-v=0 (1.17)

Equations (1.15)-(1.17) taken together give

a %

a_(';’+v.Vc,-:—V-N',~+R,~ (1.18)
The physical significance of the two terms on the left-hand side of (1.18)
can be understood by asking how we might express the time rate of
change of cj(x, y, z, t) for an observer moving with the fluid. In general,
Taylor expansion of Ac; gives

aCj aCj ac;
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ACi = = -
ot X ay 0z

The last three terms arise since a moving observer would measure a
Ac;j if ¢;j varied in space—even if ¢c; were independent of time. Dividing
by At and taking the limit as At — O,

Ac; D _9¢; | 9¢; dCj aCj

lim = — — — = 1.20
atbo At Dt ot Tax*t eyt et U=

where Dc;/Dt is the material or convective derivative. Equation (1.20)
may be written conveniently in vector notation by noting that the last
three terms on the right-hand side take the form v- V¢;. Thus,

— = 5% (1.21)

But the right-hand side of (1.21) is identical to the left-hand side of
(1.18), giving

Dc¢; ;

which equates the total time rate of change of ¢; for an observer moving
with the fluid to the divergence of the flux of the ith species with respect
to the moving fluid, accounting for chemical reactions that lead to the
generation or recombination of species. This is precisely the continuity
law that we were looking for, now written in differential form.

1.3 A MOLECULAR VIEW OF DIFFUSION

We first summarize several key aspects of solute flow by diffusion that
have been emphasized in general treatments of this subject. First, there
is no net force on any particular solute molecule in the direction of
flow. Rather, solute flux is completely determined by random thermal
motion in which it is more likely that there is a net flux of solutes flow-
ing from regions of high to low concentration. Second, especially in the
limit of dilute solutions, the solute molecules are assumed to undergo
collisions primarily with solvent molecules and not with each other.
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