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Preface

It is astonishing to consider how much innovation surrounds the PCR, a technique that is, superfi-
cially, as simple as you can get. But the concepts discussed in PCR Technology: Current Innovations,
Third Edition demonstrate numerous innovative tweaks, adaptations, formulations, concepts, and
applications. Indeed, it is its very simplicity that allows PCR to be continuously expanded and rein-
vigorated, placing this technology firmly at the top of molecular techniques and, one could argue,
making it the most important scientific tool ever invented.

It is curious, then, that the origin of the PCR is somewhat controversial and that the first public
report of its use (1985) is predated by a long way by its theoretical description (1971). Kleppe and
Gobind Khorana.' the Nobel laureate, published a description of a technique that represented the
basic principles of a method for nucleic acid replication: “The principles for extensive synthesis of
the duplexed tRNA genes which emerge from the present work are the following:

1. The DNA duplex would be denatured to form single strands. This denaturation step would
be carried out in the presence of a sufficiently large excess of the two appropriate primers.

2. Upon cooling, one would hope to obtain two structures, each containing the full length of
the template strand appropriately complexed with the primer.

3. DNA polymerase will be added to complete the process of repair replication. Two mol-
ecules of the original duplex should result.

4. The whole cycle could be repeated, there being added every time a fresh dose of the
enzyme.”

The authors go on to posit that “it is, however, possible that upon cooling after denaturation of the
DNA duplex, renaturation to form the original duplex would predominate over the template—primer
complex formation. If this tendency could not be circumvented by adjusting the concentrations of
the primers, clearly one would have to resort to the separation of the strands and then carry out
repair replication. After every cycle of repair replication, the process of strand separation would
have to be repeated.” This passage has been quoted many times and extensively scrutinized by
patent lawyers, since it appears to be a clear description of the forerunner to the process now rec-
ognized as PCR.

Of course, we now know that the vast excess of primers favors the template—primer complex
formation and drives the PCR. We could speculate that had the authors carried out an empirical
assessment of their idea, the PCR would have been invented 14 years earlier. However, the concept
proposed by Kleppe and coworkers was simply way ahead of the available technology in 1971.
First, oligonucleotide synthesis was an expensive process performed only by organic chemists, of
whom Khorana’s group were among the few. Synthetic oligonucleotides were not as readily avail-
able as in 1985 and have become a low-cost commodity item we do not even think about any longer.
Second, the description preceded the invention of DNA sequencing by either Gilbert and Maxam?
or Sanger®* and so the target sequence required for primer design was not readily available. This is
of course a crucial issue and sometimes forgotien by those who criticize Kary Mullis.

As a consequence, he was the first person to actually amplify DNA and so was awarded the
Nobel Prize for the invention of the technique and acknowledged this pioneering work of Kleppe
and Khorana: “He [Kleppe] almost had it. He saw the problems but didn’t realise how fast things
happen [in the PCR].”

In his Nobel Prize acceptance speech, Mullis described the journey of discovery and develop-
ment of PCR, summarizing: “With two oligonucleotides, DNA polymerase and the four nucleoside
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triphosphates I could make as much of a DNA sequence as I wanted and I could make it on a frag-
ment of a specific size that I could distinguish easily.”

Originally, Mullis had assumed that when primers were added to denatured DNA, they would
be extended, the extension products would then become unwound from their templates, be primed
again, and the process of extension repeated. Unfortunately, these events do not simply occur by
diffusion. The DNA must be heated to almost boiling after each round of synthesis, in order to
denature the newly formed, double-stranded DNA. This inactivated the Klenow fragment of DNA
polymerase I enzyme that was being used for synthesis and so more enzyme was required at the
start of each cycle (as predicted by Kleppe, 1971). Arguably. the critical development leading to
the universal adoption of the PCR technique was the concept of using the thermal stable DNA
polymerase that could tolerate the high temperature of the repeated denaturation steps. The switch
was made to the now commonly used Tag DNA polymerase that is extracted from the bacterium
Thermus aquaticus,] which lives in thermal hot springs, and is resistant to permanent inactivation
by exposure to high temperature.®? This means that several rounds of amplification can be car-
ried out in a closed reaction tube using the same batch of enzymes. In addition, using a thermally
stable enzyme allowed for amplification of larger fragments and for the reaction to be performed
at a higher temperature. The adoption of higher temperature reactions was sufficient to increase
replication fidelity, reduce nonspecific product formation, and allow the products to be detected
directly on ethidium bromide-stained, agarose gels.'~'> An interesting aside is that the authors
initially surmised that this enzyme might be useful as a reverse transcriptase, as it would be able to
read through RNA secondary structure at elevated temperatures. They were not far wrong, since a
related enzyme, Tth polymerase from Thermus thermophiles, does exactly that.

By 1989, the PCR technique was being used in all areas of modern biological sciences research,
including clinical and diagnostic studies of detection of HIV in AIDS patients. The adoption of the
PCR technique has been perhaps the major force driving the revolution in life sciences and associ-
ated fields we have all been privileged to witness.

The standard PCR is a deceptively simple process: low concentrations of template DNA, from a
theoretical single copy to approximately 10" copies, are combined with oligonucleotide primers in a
reaction buffer containing variations on a basic composition consisting of ammonium sulfate, Tris,
EDTA, BSA, B-mercaptoethanol, ANTPs, MgCl,, KCI, NaCl, and DNA polymerase. Application of
heat and a differential temperature profile, repeated 30—40 times, results in the amplification of the
original target, which can then be visualized, purified, and used for a wide range of downstream
manipulations.

In reality, there are numerous considerations for each of these components that transform the
simple PCR concept into a series of steps that need to be carefully considered, optimized, and vali-
dated. The purification and handling of the template, prior to inclusion in the reaction, can have a
profound effect on results. This is particularly important when a quantitative assessment is required.
These factors are discussed in detail in Chapters 1 and 2. While the oligonucleotides may be con-
sidered a standard component of the reaction, these must be designed with care and the reaction
conditions optimized to ensure that the results represent the true underlying biology, as described in
Part IV. In addition, the manufacture and purification of the oligonucleotide can contribute to PCR
behavior (Chapter 3) and so the appropriate synthesis and purification should be selected.

The absolute, optimum buffer composition is dependent upon the DNA polymerase used; differ-
ent enzymes can affect PCR efficiency and therefore product yield."® In Chapter 4, Ernie Mueller
presents a detailed discussion of the potential components for reaction buffers and in Chapter 8, new
alternatives to the standard dN'TPs are described.

As PCR reaches later cycles, it enters the plateau phase. This deviation from exponential ampli-
fication makes quantification inaccurate when based on estimates from end point product yield.
Quantification using PCR requires that a modification to the basic PCR technique is made. This
can involve digital PCR approaches or taking measurements earlier in the process, prior to the pla-
teau phase. Higuchi et al." recognized that the process of PCR could be tracked by including a
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fluorescent label into the reaction that could bind to the accumulating PCR product. As the PCR
product increases, the fluorescent emission and therefore intensity of the signal also increase. In
current real-time quantitative PCR (QPCR) technology, these signals are generated by inclusion of
cither fluorescent DNA-binding dyes or additional oligonucleotide probes. Fluorescent DNA-binding
dyes, such as SYBR Green 1, and related derivatives such as BEBO or BOXTO,"'¢ are included in
the PCR buffer along with the DNA primers. As the target is amplified, the dye binds to the DNA
product and adopts an alternative conformation. This conformational change results in an increase in
fluorescent emission. Alternatively, a labeled primer can be included in the reaction, as described in
Chapter 5. Additional specificity is achieved by including an additional oligo probe situated between
the two primers. This oligo probe is labeled (Chapter 5) and, in most cases, also quenched. Various
probe options are available but the most popular are the linear hydrolysis probe (also referred (o as
TagMan probes),”” Molecular Beacons,'® Scorpions' (Chapter 6), and LightCycler® probes.?’ Linear
hydrolysis probes are oligos with a fluorescent label on the 5" end and a quencher molecule on the 3
end. These are designed to have an annealing temperature above that of the primers and therefore,
as the reaction is cooled from the melting temperature to the annealing temperature of the primers,
the probe hybridizes to the target sequence. On further cooling, the primers hybridize and the new
strand is elongated until the DNA polymerase reaches the 5" of the probe. The probe is then cleaved
by 5’-3’ exonuclease activity of the enzyme, releasing the fluorescent label. In this way, a fluorescent
label should be released with each amplicon synthesized. In reality, between 4% and 47% of ampli-
cons are detected using the linear probe system. Alternative probe systems may be used to increase
detection sensitivity or specificity. Different probe methods provide different sensitivities of detec-
tion due to greater efficiency in separating the fluorescent label from the quencher.?! For example, we
have observed that incorporation of the locked nucleic acid (LNA™)-modified nucleotides (Chapter
7) residues into a lincar hydrolysis probe can increase detection sensitivity by up to 10-fold.

Scorpion probes are a structured detection system. These combine the forward primer and detec-
tion probe into a single molecule, also holding the fluorophore and quencher in close proximity
with a stem structure. Initially the primer region hybridizes and elongates from the single-stranded
target. After melting away the template, the Scorpion opens and the probe region hybridizes to the
target region, separating the label from the quencher. In Chapter 6, David Whitcombe provides a
detailed description of how to design these molecules and also how to apply them to genotyping
experiments.

The sensitivity of any assay is, in part, determined by the assay design. Much has been writ-
ten about the design and optimization of qPCR assays.?? In Chapters 12 through 14 guidelines are
detailed that would enable any bioscientist to design and optimize their own PCR or gPCR assay
regardless of the application. Chapter 15 contains a description of a case study that illustrated the
dangers of ignoring best practice and working with poorly defined assays.

The replicative power of PCR is phenomenal. In theory, a single-template molecule should be
replicated during each PCR cycle. Assuming absolute, perfect replication at each cycle, this would
lead to 2 or 1'2 amplicon molecules after 40 rounds of amplification. By now, there could be some-
thing approaching a similar number of applications for the technique and a description of just a few
of these is included in Part VI of this book. The sensitivity achieved using PCR allows infectious
diseases such as HIV, TB, and malaria to be detected with tremendous sensitivity and treatment
efficacy monitored; however, there is a requirement for this to be performed within the highly
restrictive environment of the developing world. In Chapter 25, Clare Watt and Jim Huggett share
their experience of setting up diagnostic services in more challenging situations.

In addition to genomic sequence analysis, it has long been believed that investigating specific
mRNA sequences can be informative about the biology of the cell. Investigating gene quantity
changes, for example, between normal tissues and diseased cells or looking for changes in gene
expression in response to drug freatments is being used to understand how regulation of gene expres-
sion is a part of the complex system of control of cellular processes. Measuring mRNA requires an
additional step in order to convert RNA to a DNA template that is suitable for PCR amplification.
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This is carried out using a reverse transcriptase enzyme and extension from one or more oligo prim-
ers. Priming of the reverse transcription may be from a sequence-specific primer, from a series of
random primers that hybridize along the length of the mRNA, or from a primer directed toward a
tract of adenosines that is added to the 3" end of most messenger RNA sequences, referred to as the
poly A tail. After elongation from the primer, a double-stranded hybrid of RNA and DNA, called
single-strand ¢cDNA, is produced. This ¢cDNA is then a suitable template for PCR and relative quan-
tities of specific RNA templates are determined carefully in a process of semi-qPCR or gPCR (as
described above).

The availability of vast amounts of sequence data from the various genome and transcriptome
sequencing projects has also enabled the identification of small RNA species (ncRNA), including
miRNA genetic markers that are characteristic for specific diseases. Using PCR to amplify these
targets is particularly challenging because they are so small and do not have natural poly A tails.
In Chapter 22, Castoldi et al. present a novel technique to quantify all RNA species in a sample,
including miRNA and precursor molecules, thus enabling the components in a miRNA pathway to
be quantified. These miRNA genetic markers can be tracked and used to monitor patient relapse,
along with effectiveness of drug and transplant treatments (Chapter 18).

When launching into a project requiring PCR, it is important to ensure that instrumentation is
appropriate and functioning correctly. PCR instruments have become notorious due to variability
between instruments and within a single block. It is not unheard of to have a reaction that functions
only in the central wells and not around the edges, due to lack of thermal uniformity (described in
detail in Chapter 9). There is now a huge effort to develop and refine instrumentation. Drives to
miniaturize (Chapter 11) and also to increase the uniformity and rate of reactions (Chapter 10) are
described which give a wonderful insight into the world of engineering that addresses the biological
need to push PCR further. Similarly, the fundamentals of the PCR technique are being adapted to
quantify proteins using proximity ligation assay (Chapter 27) or to identify small sequence changes
such as single-nucleotide polymorphisms (SNPs) using differences in the melting behavior of the
PCR amplicon, referred to as high-resolution melting analysis (Chapter 28).

In order to protect against uncertainties due to reaction variability, it is important to include a
series of controls alongside all samples for any experiment.

The choice of controls and whether to include them should always depend only upon the nature
of the study. Factors such as the need to complete a paper/report/thesis/presentation, the cost of the
experiment or the date of the next grant body’s review meeting may be important to scheduling but
they should not influence the experimental design. An inexpensive experimental design, run very
quickly but without controls to verify that the findings are genuine, is not just completely worth-
less, but if published enters the peer-reviewed literature and becomes virtually impossible to erase.
It amounts to a false economy of all resources to run inadequate experiments that could even result
in retractions. Some controls must be obligatory and honest, original data should be presented for
inspection, especially when the results of the study or analysis lead to life and death decisions. It
is worth recognizing that the simple disregard for the data from controls in a study claiming a link
between autism and the MMR (measles, mumps, rubella) vaccination lead to the distress of parents
of children affected by the disorder and even to loss of life as a result of parents refusing to have their
children vaccinated. The sobering story is told by Tania Nolan and Stephen Bustin in Chapter 15 as
they outline the journey and justification for the MIQE (Minimum Information for Publication of
Quantitative Real-Time PCR Experiments) guidelines.” It is easy for scientists who are engrossed in
a research project and chained to a laboratory bench for 16 h/day to lose sight of their responsibility
to the scientific community. While there is a constant and substantial pressure to publish, this should
never be to the detriment of the best-quality experiments possible or without absolute consideration
for the complete truth.

In conclusion, the work presented in this third edition of PCR Technology: Current Innovations
demonstrates that there are still numerous new developments affecting the “simple” PCR and we
would hazard a guess that when the fourth and fifth editions are published, the same will be true. We
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hope that readers of this book draw inspiration from the details presented by the numerous authors
working in a wide range of fields and at the same time remember that while innovation is good, we
must never lose sight of basic concepts of good science that can get overlooked in the rush to hop on
the next bandwagon.
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