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S

Safety Education

Safety education is .the study of those human,
machine, and environmental variables which interact
to affect the probability of injury or illness to people
or damage to property; it embraces a host of situa-
tions involving people, such as work, recreation,
sport, transportation, home, and natural and human-
created disasters; it encompasses not only the safe
production of goods or delivery of services but the
ntegrity of the products th Ivesin the o !
environment.

The modern study of safety has taken much from
the discipline of public health and the epidemio-
logical techniques associated with it. This approach
recognizes that accidents are one of the most serious
of public health problems, that their causes are
usually complex, that they are foreseeable, and that
they are not caused solely by the acts of people
because machines and environmental factors, in their
broadest sense, are also usually involved.

One need for the formal study of accidents devel-
oped as an outgrowth of laws relating to working
conditions and workers’ compensation insurance pro-
grams in Europe and the United States. This move-
ment of the late nineteenth and early twentieth cen-
tury created an awareness of the human toll and costs
of occupational injuries and provided the motivation
to reduce accidents. The National Safety Council was
formed in the United States in 1912 and provided
educational services covering the extent and variety
of safety problem areas. Educational programs were
started in some schools in the United States in the
1920s, and the Center for Safety Education at New
York University was founded in 1938, with Herbert
J. Stack as its director, to conduct research and
provide training of safety professionals. Amos E.
Neyhart of Pennsylvania State University pioneered
driver education for high-school students in the
United States.

In 1970 the United States legislature passed the
Occupational Safety and Health Act (0SHA) which
resulted in the promulgation of many safety and
health standards in the United States industries,
upheld by inspection of work places by OSHA per-
sonnel. In addition to inspections initiated by
request, usually by workers, 0O5HA personnel peri-
odically inspect at random those industries (and now
also government facilities) having the potential for
health hazards or relatively high accidental injury
reports. A key aim of the OSHA program is to educate
workers and management in various aspects of health
and safety in industry, mining, and construction.

Comparable legislation exists in England (Heaith
and Safety at Work Act 1974), France, the Fedéfal
Republic of Germany, and Sweden (Working
Environment Act 1977). Each of these acts also
requires education and training of workers in safe
procedures. i

The insurance companies that offer workers’ com-
pensation coverage have pioneered safcty?wm
training for workers and management. ¢ dlso
provide consultation to reduce work accidents for the
mutual benefit of insurer and policy holder.

Various professional organizations, such as the
American Society of Safety Engineers, the American
Industrial Hygiene Association, the Safety Systems
Society, and England’s Royal Society for the Pre-
vention of Accidents, among others, serve a strong
educational function by publishing technical
journals, holding meetings, and offering short
CUUTSES.

In the elementary-school curriculum, safety edu-
cation is often woven into other subjects by examples
of safe human behavior in such activities as crossing
streets, riding bicycles, or using seatbelts in vehicles,
and by fire drills. Safety education in United States
high schools culminates in driver education, usually
consisting of 30 hours in the classroom and 6 hours
of driving. The latter is sometimes augmented by
some hours in simulators and on ranges away from
other traffic to learn how to control the car, In most
countries, except the United States, driver education
is do]ne informally or by commercial schools (OECD
1976).

A number of research studies on the effects of
driver education on accidents have been done in the
United States (McGuire and Kersh 1971) and in
England (Raymond et al. 1973). Those studies that
have used appropriate control groups have not found
consistent benefits of driver education on measures
related to accidents or violations. There are also
extensive programs now in motorcycle rider edu-
cation and training for novice riders, using curricula
based on a task-analysis approach (McKnight and
Heywood 1974) in the United States; other courses
are available on a more limited scale for experienced
riders. Similar programs exist in the United
Kingdom.

Some universities offer degree programs in safety.
In the United States, the Board of Certified Safety
Professionals (BCSP 1982) has recommended a cur-
riculum for the baccalaureate degree in safety, which
puts a heavy emphasis on the physical sciences, math-
ematics, communications skills, human factors/ergo-
nomics, and basic concepts of industrial safety and
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hygiene. This suggested curriculum reflects the grow-
in% technical complexity of the problems confronting
safety professionals. The methods used to control
hazards (e.g., nuclear power) are often technically
complex and require sophisticated methods of analy-
sis to forecast the risks.

A major aspect of safety education is to teach the
methods of collecting data that provide indices of
the level of safety and measures of the exposure
of people, so that the risk associated with various
situations can be quantified. Quantification of the
level of safety is necessary to determine if a need
exists for corrective action, to indicate the kinds of
corrections that should be applied, and to evaluate
their effectiveness. Thus, for example, the American
National Standards Institute Z16.1 defines some
aspects of industrial accidents in quantitative terms
such as by frequency and severity of injury rates.
These measures are augmented by analyses of costs
and benefits to realize the most benefit for the finan-
cial investment and by cost—effectiveness analysis to
choose the most effective corrective action for the
cost invested. Systems analytic techniques, such as
fault-tree analysis, are now a part of the education
of safety professionals.

While much emphasis is still being placed upon
the education of safety personnel in basic concepts
related to the elimination of hazards—such as
machine guarding, materials handling, and fire
safety—the development of new technologies
imposes increasing di is upon the ion of
the safety staff in sophisticated techniques for the
control and reduction of injuries and illnesses caused
by hazards in the human environment.
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Sampling

Social science research is aimed at developing useful
generalizations about society and the ways in which
individuals behave in society. However, due to prac-
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tical constraints on research resources, the social
scientist is usually limited to the study of a sample
rather than a complete coverage of the population
for which these generalizations are appropriate. Pro-
vided that scientific sampling procedures are em-
ployed the use of a sample often provides many
advantages compared with a complete coverage:
reduced costs associated with obtaining and analyzing
the data, reduced requir for specialized per-
sonnel to conduct the fieldwork, greater speed in
most aspects of data manipulation and summari-
zation, and greater accuracy due to the possibility of
closer supervision of fieldwork and data preparation.

Kish (1965) has divided the social science research
situations in which samples are used into three broad
categories: (a) riments—in which the treatment
variables are deliberately introduced and all
extraneous variables are either controlled or ran-
domized; (b) surveys—in which all members of a
defined population have a known nonzero probability
of selection into the sample; and (c) investigations—
in which data are collected without either the ran-
domization of experiments or the probability sam-
pling of surveys. Experiments are strong with respect
to internal validity because they are concerned with
the question of whether a true measure of the effect
of a treatment variable has been obtained for the
subjects in the experiment. In contrast, surveys are
strong with respect to external validity because they
are concerned with the question of whether the
findings obtained for the subjects in the survey may
be generalized to a wider population. Investigations
are weak on both types of validity and their use is
due frequently to convenience or low cost.

In educational research, the survey and experi-
mental approaches have often been portrayed as
quite separate methodologies. The perceived dif-
ferences between these approaches have not been a
consequence of statistical theory but rather would
appear to be associated with the degree of control
which the researcher may exert over the educational
environment. Educational researchers have rarely
been placed in the enviable situation of being able to
introduce experimental treatments in an independent
fashion, with appropriate allowances for extraneous
variables, into randomly selected portions of a large
and dispersed population, Consequently, the prac-
tical difficulties involved in the design of educational
research experiments so as to investigate causal
relationships within specific populations have often
resulted in questions of sample design being largely
ignored.

The following discussion of sample design for edu-
cational research has focused on some aspects of the
survey approach and its application to large-scale
educational studies. However, the issues which have
been raised have direct bearing on the conduct of
experimental studies because the distributions of
relationships between characteristics in causal
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systems, like the distributions of these characteristics
taken alone, exist only with reference to particular
populations.

1. Populations

The populations which are of interest to educational
researchers are generally finite populations that may
be defined jointly with the elements that they contain.
A population in educational research is therefore,
usually, the aggregate of a finite number of elements,
and these elements are the basic units that comprise
and define the population.

Kish (1965) stated that a population should be
described in terms of (a) content, (b) units, (c)
extent, and (d) time. For example, in a study of
the characteristics of Australian secondary-school
students, it may be desirable to specify the popu-
lations as: (a) all 14-year-old students, (b) in secon-
dary schools, (c) in Australia, (d) in 1985.

In order to prepare a description of a population
to be considered in an educational research study it
is important to distinguish between the population
for which the results are desired, the desired target
population, and the population actually covered, the
survey population. In an ideal situation these two

opulations would be the same. However, dif-
‘erences may arise due to noncoverage: for example,
for the population described above, a list may be
compiled of schools during early 1985 which acci-
dentally omits some new schools which begin oper-
ating later in the year. Alternatively, differences may
occur because of nonresponse at the data collection
stage. For example, a number of schools having large
concentrations of educationally retarded students
might be unwilling to participate in the study (see
Data Analysis: Nonresponse).

Strictly speaking, only the survey population is
represented by the sample, but this population may
be difficult to describe exactly and therefore it is
often easier to write about the defined target popu-
lation (Kish 1965). The defined target population
description provides an operational definition which
is used to guide the construction of a list of population
elements, or sa:;lﬁling frame, from which the sample
may be drawn. The elements that are excluded from
the desired target population in order to form the
defined target population are referred to as the
excluded population. '

For example, during a cross-national study of
science achievement carried out in 1970 by the
International Association for the Evaluation of Edu-
cational Achievement (IEA), one of the desired Aus-
tralian target populations for the study was described
as:

All students aged 14.0-14.11 years at the time of testing.

This was the last point in most of the school systems in

IEA where 100 percent of an age group were still in

compulsory schooling. (Comber and Keeves 1973 p. 10)

In Australia it was decided that, for certain admin-
istrative reasons, the study would be conducted only
within six states of Australia and not within the
smaller Australian territories. It was also decided
that only students in those school grade levels which
contained the majority of 14-year-old students would
be tested.

The desired Australian target population was
therefore reformulated in order to obtain the defined
Australian target population;

All students aged 14.0-14.11 years on 1 August 1970 in
the following Australian states and secondary-school
grades:

New South Wales
Victoria
Queensland
South Australia
‘West Australia
Tasmania

Forms I, 11, and II1

Forms 1, II, III, and IV
Grades 8, 9, and 10

1st year, 2nd year, and 3rd year
Years 1, 2, and 3

Years I, II, III, and IV,

The majority of students in the excluded popu-
lation were 14-year-olds who were in grade levels
which were outside the ranges specified in the
description of the defined target population. The
students in the “other territories” of Australia
(Australian Capital Territory and Northern Ter-
ritory) were excluded because of certain admin-
istrative and cost constraints which were placed on
the study.

2. Sampling Frames

Before selecting the sample, the elements of the
defined target population must be assembled into a
sampling frame. The sampling frame usually takes
the form of a physical list of the elements, and is the
means by which the researcher is able to “take hold”
of the defined target population. The entries in the
sampling frame may refer to the individual elements
(for example, students) or groups of these elements
{for example, schools).

In practice, the sampling frame is more than just
a list because the entries are normally arranged in
an order which corresponds to their membership of
certain strata, For example, in a series of large-scale
studies of educational achievement carried out in
21 countries during the early 19705 (Peaker 1975),
sampling frames were constructed which listed
schools according to their size (number of students),
type (for example, comprehensive or selective),
region (for example, urban or rural), and sex com-
position (single sex or coeducational). The use of
strata during the preparation of a sampling frame is
often undertaken in order to ensure that data are
obtained which will permit the researcher to study,
and more accurately assess, the characteristics of
both individual and combined strata.
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3. Probability Samples and Nonprobability
Samples

There are usually two main aims involved in the
conduct of sample surveys in educational research:
(a) the estimation of the values of population attri-
butes (parameters) from the values of sample attri-
butes (statistics), and (b) the testing of statistical
hypotheses about population characteristics. These
two aims require that the researcher has some knowl-
edge of the accuracy of the values of the sample
statistics as estimates of the population parameters.
Knowledge of the accuracy of these estimates may
generally be derived from statistical theory provided
that probability sampling has been employed. Prob-
ability sampling requires that each member of the
defined target population has a known, and nonzero,
chance of being selected into the sample. The accu-
racy of samples selected without using probability
sampling methods cannot be discovered from the
internal evidence of a single sample.

Nonprobability sampling in educational research
has mostly taken the form of judgment sampling in
which expert choice is used to guide the selection of
typical or representative samples. These samples may
be better than probability samples, or they may not.
Their quality cannot be determined without knowl-
edge of the relevant population parameters and if
these parameters were known then there would be
no need to select a sample.

The use of judgment samples in educational
research is sometimes carried out with the (usually
implied) justification that the sample represents a
hypothetical universe rather than a real population.
This justification may lead to research results which
are not meaningful if the gap between this hypo-
thetical universe and any real population is too large.
Since nonprobability samples are not appropriate for
dealing objectively with the aims of estimation and
hypothesis testing, they will not be examined in the
following discussion.

4. Accuracy, Bias, and Precision

The sample estimate derived from any one sample
is inaccurate to the extent that it differs from the
population parameter. Generally, the value of the
population parameter is not known and therefore
the actual accuracy of an individual sample estimate
cannot be assessed. Instead, through a knowledge of
the behaviour of estimates derived from all possible
samples which can be drawn from the population by
using the same sample design it is sometimes possible
to assess the probable accuracy of the obtained sam-
ple estimate.

For example, consider a random sample of n
elements which is used to calculate the sample mean,

i, as an estimate of the value of the population mean, -

p. If an infinite set of independent samples of size n

4372

were drawn from this population and the sample
mean calculated for each sample then the average
of the sampling distribution of sample means, the
expected value, could be denoted by E(£).

The accuracy of the sample statistic, £, as an esti-
mator of the population parameter, u, may be
summarized in terms of the mean square error (MSE).
The MSE is defined as the average of the squares of
the deviations of all possible sample estimates from
the value being estimated (Hansen et al. 1953).

MSE [£] = E[2 — u]? a

= E[% — E®P + [E() - uf
= Variance of ¥ + [Bias of £J?

A sample design is unbiased if E(®) =y It is
important to remember that “bias” is not a property
of a single sample, but of the entire sampling dis-
tribution, and that it belongs neither to the selection
nor the estimation procedure alone, but to both
jointly.

The reciprocal of the variance of a sample estimate
is commonly referred to as the precision, whereas
the reciprocal of the mean square error is referred
to as the accuracy.

For most well-designed samples in educational sur-
vey research, the sampling bias is either zero or
small—tending towards zero with increasing sample
size. The accuracy of sample estimates is therefore
generally assessed in terms of the sampling variation
of the values of £ around their expected value E(Z).

4.1 The Accuracy of Individual Sample Estimates
The educational researcher is usually dealing with a
single sample of data and not with all possible samples
from a population. The variance of a sample estimate
as a measure of sampling accuracy cannot therefore
be calculated exactly. Fortunately, statisticians have
derived some formulas which provide estimates of
the variance based on the internal evidence of a single
sample of data.

For a simple random sample of n elements drawn
without replacement from a population of N
elements, the variance of the sample mean may be
estimated from a single sample of data by using the
following formula (Kish 1965 p. 41):

N - ns? :
N @

where 57 = E(x; — £)¥/(n ~ 1) is an unbiased estimate
of the variance of the element values, x;, in the
population.

Note that for sufficiently large values of N, the
variance of the sample mean may be estimated by
s¥n because the finite population correction,
(N = n)/N, tends to unity.

In many practical survey research situations, the
sampling distribution of the estimated mean is

var(f) =



approximately normally distributed. The approxi-
mation improves with increasing sample size even
though the distribution of elements in the parent
population may be far from normal. This charac-
teristic of the sampling distribution of the sample
mean is associated with the “central limit theorem™
and it occurs not only for the mean but for most
estimators commonly used to describe survey
research results (Kish 1965).

From a knowledge of the properties of the normal
distribution, itis possible to be “68 percent confident”
that the range ¥ = V[V(#)] includes the popula-
tion mean, where % is the sample mean obtained
from one sample from the population. The quantity
VIV(x)] is called the standard error, SE(¥), of the
sample mean, %. Similarly, it is known that the range
% + 1,96 sE(%) will include the population mean with
95 percent confidence. The calculation of confidence
limits for estimates allows researchers to satisfy the
estimation aim of survey research. Also, through the
construction of difference scores d =%, — %, and
using a knowledge of the standard errors SE(%,) and
SE(¥;), the statistical hypothesis aim may be satisfied.

Itshould be remembered that, although this discus-
sion has focused on sample means, confidence limits
could also be set up for many other population values,
which, for example, are estimated by &, in the form
7 = V[ V(a)). T%e quantity ¢ represents an appro-
priate constant which is usually obtained from the
normal distribution or under certain conditions from
the ¢ distribution. For most sample estimates encoun-
tered in practical survey research, assumptions of
normality lead to errors that are small compared to
other sources of inaccuracy.

5. Multistage Sampling

A population of elements can usually be described
in terms of a hierarchy of sampling units of different
sizes and types. For example, a population of school
students may be seen as being composed of a number
of classes each of which is composed of a number of
students. Further, the classes may be grouped into a
number of schools.

The hypothetical population of school students
in Fig. 1 shows 18 students distributed among six
classrooms (with three students per class) and three
schools (with two classes per school).

From this population a multistage sample could be
drawn by randomly selecting two schools at the first
stage, followed by randomly selecting one classroom
from each of the selected schools at the second stage,
and then randomly selecting two students from each
selected classroom at the third stage. This three-
stage sample design would provide a sample of four
students. It would also provide a sample which is an
epsem sample (equal probability of selection
method) (Hansen et al. 1953). Thatis, the probability
of selecting any student in the population would be

Sampling

Schools School | School 2 School 3

Clossmoms Class | Closs2 Closs3  Closs4 Clos 5 Closs 6

AN NNMNNNMN

Students | 2 3 45 67 8 9011121341516 1718

Figure 1
Hypothetical popul of eigl
into six classrooms and three schools

N P

students grouped

the same for all students (2/3 % 1/2 % 2/3 = 4/18).
Similarly, a simple random sample of four students
from the population of 18 students would also provide
an epsem sample in which the probability of selection
would be the same for all students (4/18). Epsem
sampling is widely used in survey research because it
usually results in self-weighting samples. In these
samples an unbiased estimate of the population mean
may be obtained by taking the simple average of the
sample cases.

It is important to remember that the use of prob-
ability sampling does not automatically lead to an
epsem sample. Probability sampling requires that
each element in the population has a known and
nonzero chance of selection which may or may not
be equal for all elements. There are many examples
in the literature which demonstrate that educational
researchers often overlook this point, For example,
one popular sample design in educational research
has been to select a simple random sample of, say, a
schools from a list of A schools, and then select a
simple random sample of b students from each selec-
ted school.

The probability of selecting a student by using this
design is ab/AB;, where B, is the size of the ith school
in the population, Consequently, students from large
schools have less chance of selection and the simple
average of sample cases may result in biased esti-
mates of the population mean—especially if the mag-
nitudes of the B; values vary a great deal and the
survey variable is correlated with school size.

6. Stratification

The technique of stratification is often employed in
the preparation of sample designs for educational
survey research because it generally provides
increased precision in sample estimates without lead-
ing to substantial increases in costs. Stratification
does not imply any departure from probability sam-
pling—it simply requires that the population be di-
vided into subpopulations called strata and that the
random sampling be conducted independently within
each of these strata. The sample estimates of popu-
lation parameters are then obtained by combining
the information from each stratum.

Stratification may be used in survey research for
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reasons other than obtaining gains in sampling pre-
cision, Strata may be formed in order to employ
different sample designs within strata, or because the
subpopulations defined by the strata are designated
as separate domains of study. Some typical variables
used to stratify populations in educational research
are: school location (metropolitan/rural), type of
school (government/nongovernment), school size
(large/medium/small), and sex of pupils in school
(males only/females only/coeducational).

Stratification does not necessarily require that the
same sampling fraction is used within each stratum.
If a uniform sampling fraction is used then the sample
design is known as a proportionate stratified sample
because the sample size from any stratum is pro-
portional to the population size of the stratum. If
the sampling fractions vary between strata then the
obtained sample is a disproportionate stratified
sample. The simple random sample design is called
a self-weighting design because each element has the
same probability of selection equal to n/N. For this
design, each element has a weight of 1/n in the mean,
1 in the sample total, and F = 1/f in the population
total, where f = n/N is the uniform sampling rate for
all population elements (Kish 1965 p. 424).

In a stratified sample design of elements, different
sampling fractions may be employed in the defined
strata of the population. The chance of an element
appearing in the sample is specified by the sampling
fraction associated with the stratum in which that
element is located. The reciprocals of the sampling
fractions, which are sometimes called the raising
factors, describe how many elements in the popu-
lation are represented by an element in the sample.
At the data analysis stage either the raising factors,
or any set of numbers proportional to them, may be
used to assign weights to the elements. The constant
of proportionality makes no difference to the sample
estimates. However, in order to avoid confusion for
the readers of survey research reports, the constant
is usually selected so that the sum of the weights is
equal to the sample size.

For example, consider a stratified sample design
of n elements which is applied to a population of N
elements by selecting a simple random sample of n;
elements from the hth stratum containing N,
elements. In the Ath stratum the probability of se-
lecting an element is n,/N,, and therefore the raising
factor for this stratum is Ny/n,. That is, each selected
element represents Ny/n, elements in the population.

The sum of the raising factors over all 7 sample
elements is equal to the population size. If there are
two strata for the sample design then:

‘N | N,
(— + — + ... for n, elements
ny m

‘N, N,
+ (nz + P +... forn;elements) =N (3)
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In order to make the sum of the weights equal to the
sample size, n, both sides of the above equation will
have to be multiplied by a constant factor of n/N.
That is:

(N‘ LA lem t)
r N . .« IOr By elements

+ (% . % +...forn, elemenls) =n (4)

Therefore the weight for an element in the hth stra-
tum is Ny/ny-n/N.

An esthmate of the variance of the sample mean,
Xy, for the stratified random sample design described
above may be obtained from the following formula
(Kish 1963 p. 81):

- N} N, — ny s
var (f,) = 2“: N TN, n,

where
s} = 2 (ens — Xn)3f(ny — 1)

is the variance of the simple random sample of n,
elements in the hth stratum.

Note that for fixed values of n, n;, N, and N,, the
precision depends upon the sum of the sj values
across strata. If the stratification procedures are
extremely successful then element values within
strata will be very similar and consequently the mag-
nitude of var(#,) will be small. For the special case
of proportionate stratified random sampling of
elements, the values of n,/N, are equal to n/N for all
strata. The element weight in this special case is 1
for all sample elements.

Kish (1965 p 88) has listed several aspects of a
research study which benefit from using proportion-
ate random sampling of elements from the strata:
(a) sampling precision—the variance of the sample
estimate of the mean cannot be greater than for an
unstratified sample of the same size; (b) admin-
istration—proportionate allocation can typically be
done simply and easily; and (c) analysis—pro-
portionate allocation generally leads to self-weight-
ing designs.

&)

7. The Comparison of Sample Designs

In a previous section it was shown that, for the
hypothetical population in Fig. 1, either a three-stage
sample design or a simple random sample design
could be used to select epsem samples of the same
size. However, equality of selection probabilities in
the two designs provides no guarantee that the vari-
ances of sample estimates obtained from each design
will be the same.

Fisher (1922) suggested that sample designs could
be described and compared in terms of their effici-
ency. For example, one sample design, denoted i,
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may be compared to another sample design, denoted
J» by considering the inverse of the variance of sample
estimates for the same sample size. Using E to rep-
resent the efficiency of a sample design for the sample
mean, and n to represent the sample size, the effi-
ciency of these two sample designs can be compared
by constructing the following ratio:

E; _ Var(x)

‘E,r = Var(x;) (n; = HJ;) (6)

More recently, Kish (1965) recommended that the
simple random sample design should be used as a
standard for quantifying the efficiency of other types
of more complex sample designs. Kish introduced
the term Deff (design effect) to describe the ratio of
the variance of the sample mean for a complex sam-
ple design, denoted ¢, to the variance of a simple
random sample, denoted srs, of the same size:

Var(£,)
Deft = Gz, .y (e = on) m

The values of Deff for sample means and multi-
variate statistics, such as correlation coefficients and
regression coefficients, have been found to be greater
than unity for many sample designs which are com-
monly used in educational survey research (Peaker
1975, Ross 1978).

8. The Effective Sample Size

Complex sample designs may also be compared to
simple random sample designs by calculating the
value of the effective sample size (Kish 1965 p. 259)
or the simple equivalent sample (Peaker 1967 p. 149).
For a given complex sample, the effective sample
size is, for the variable under consideration, the size
of the simple random sample which would have the
same variance as the complex sample. For example,
consider a population of N students. If a complex
sample design is used to select an epsem sample of
n, students, then the variance of the sample mean,
Var(x,;) may be written as:

Var(£,) = Deff.Var(z,,) (n. = n,,) (8)

Or, alternatively, since n, = n,,, this expression
may be written in the form presented by Kish (1965
p. 238):

) N-n. §°

Var(x.) = Deff N ) 9)
where §7 is the population variance.

Now consider a simple random sample design
which is used to select a sample of n* elements from
the same population of students. Let the variance of
the sample mean for this sample, Var*(x,,), be equal
to the variance of the sample mean for the complex
sample design, Var(x.). That is, Var(#.) = Var*(x,,).

Substituting on both sides gives the following:

Deft

N-n 8§ N-n* 5§
e s it (10)

If N is large compared to n, or n*, then n* = n,/Deff
is the effective sample size for the complex sample
design.

It is important to recognize that in complex sample
designs the sampling precision is a function of the
whole sample design and not just the total sample
size. In order to make meaningful comparisons of
the sampling precision of complex sample designs,
the design effects must be compared in association
with the total sizes of the complex samples.

9. Simple Two-stage Cluster Sampling

In educational research, a complex sample design is
often employed rather than a simple random sample
design because of cost constraints. For example, a
two-stage sample consisting of the selection of 10
schools followed by the selection of clusters of 20
students within each of these schools would generally
lead to smaller data collection costs compared with
a simple random sample of 200 students. The reduced
costs occur because the simple random sample may
require the researcher to collect data from as many
as 200 schools. However, the reduction in costs
associated with the complex sample design must be
balanced against the potential for an increase in the
variance of sample estimates. The selection of groups
of students at the first stage in a two-stage sample
design is referred to as cluster sampling. Cluster
sampling involves the division of the population into
clusters which serve as the initial umts of selection.

The variance of the sample mean for the simple
two-stage cluster sample design depends, for a given
number of clusters and a given ultimate cluster size,
on the value of the intraclass correlation coefficient.
This coefficient is a measure of the degree of homo-
geneity within clusters. In educational research, stu-
dent characteristics are generally more homogeneous
within schools than would be the case if students were
grouped at random, The homogeneity of individuals
within sampling units may be due to common selec-
tive factors, or to joint exposure to the same
influence, or to mutual interaction, or to some com-
bination of these. It is important to remember that
the coefficient of intraclass correlation may take dif-
ferent values for different populations, different clus-
tering units, and different variables.

Consider a population of elements divided into
equal-sized clusters. Firstly, a simple random sample
can be drawn of size n from the population. Secondly,
a two-stage sample of the same size can be drawn
from the population by using simple random sam-
pling to select m clusters, and then for each of the
selected clusters by using simple random sampling to
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select /i elements, so that the total sample size n is
given by: n=m-#A. The relationship between the
variances of the sampling distributions of sample
means for these two designs is (Kish 1965 p. 162%:

Var(z.) = Var(%,,) [1 + (7 — 1) - roh] (11

where Var(£,) is the variance of the sampling dis-
tribution of sample means for the simple two-stage
cluster design; Var(%,,) is the variance of the sam-
pling distribution of sample means for the simple
random sample design; 7 is the ultimate cluster size;
and roh is the coefficient of intraclass correlation.

By transposing the above equation, the value of
the design effect for the simple two-stage cluster
sample design may be written as a function of the
ultimate cluster size and the coefficient of intraclass
correlation:

Deff = Y] _ 1 4 (53— 1yroh 12)
Var(x,,)

Since roh is generally positive (for students within
schools and students within classrooms) the precision
of the simple two-stage cluster sample design (which
uses either schools or classrooms as primary sampling
units) will generally result in sample means which
have larger variance than for a simple random sample
design of the same size. The losses in sampling pre-
cision associated with the two-stage design must
therefore be weighed against the “gains” associated
with reduced costs due to the selection and measure-
ment of smaller numbers of primary sampling units.

Experience gained from large-scale evaluation
studies carried out in many countries (Peaker 1967,
1975) has shown that roh values of around 0.2 provide
reasonably accurate estimates of student homo-
geneity for achievement variables within schools.
Higher values of roh for achievement variables have
been noted in Australia when considering student
homogeneity within classrooms (Ross 1978). These
higher values for students within classroons are some-
times due to administrative arrangements in school
systems. For example, students could be allocated to
classrooms by using ability streaming within schools,
or there may be substantial differences between class-
room learning environments within schools.

10. Estimation of the Coefficient of Intraclass
Correlation

The coefficient of intraclass correlation was devel-
oped in connection with studies carried out to esti-
mate deg of fraternal blance, as in the
calculation of the correlation between the heights
of brothers. To establish this correlation there is
generally no reason for ordering pairs of meas-
urements obtained from any two brothers. The initial
approach to this problem was the calculation of a
product-moment correlation coefficient from a sym-
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metrical table of measures consisting of two inter-
changed entries for each pair of measures. This
method is suitable for small numbers of entries—
however the number of entries in the table rises
rapidly as the number of pairs increases.

Some computationally simpler methods for cal-
culating estimates of this coefficient have been
described by Haggard (1958). The most commonly
used method appears to have been based on using
one-way analysis of variance where the clusters which
define the first-stage sampling units, for example
schools or classrooms, are regarded as the “treat-
ments”. The between clusters mean square, BCMS,
and the within clusters mean square, wcMs, are then
combined with the number of elements per cluster,
i, to obtain the estimate of roh:

BCMS — WCMS

BCMS + (A — 1) wcmMs (13

estimated roh =

An alternative formula, which is based upon vari-
ance estimates for elements and cluster means has
been presented by Ross (1983):

st - &

estimated roh = oD (14)

where s? is the variance of the cluster means; 52 is
the variance of the elements; and 7 is the ultimate
cluster size.

Both of these formulas assume that the data have
been collected by using simple two-stage cluster sam-
pling, and also that both the number of elements and
the number of clusters in the population are large.

11. Sample Design Tables for Simple Two-stage
Cluster Sample Designs

The two-stage cluster sample design is probably the
most often used sample design in educational
research. Generally this design is employed by se-
lecting either schools or classes at the first stage of
sampling, followed by the selection of either students
within schools or students within classes at the second
stage. In many research situations these sample
designs will be less expensive than simple random
sample designs of the same size. Also, they offer an
opportunity for the researcher to conduct analyses at
higher levels of data aggregation. For example, the
selection of clusters o%gs:;dems according to their
membership of classes would allow the researcher,
provided there were sufficient numbers of classes and
sufficient numbers of students per class in the sample,
to create a data file based on class mean scores and
then to conduct analyses at the “between-class” level
(see Units of Analysis).

The previous discussion showed that the precision
of the simple two-stage cluster design relative to a
simple random sample design of the same size was a
function of #, the ultimate cluster size, and roh, the
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coefficient of intraclass correlation. With a knowl-
edge of both of these statistics, in combination with
the required level of sampling precision, it is possible
to establish a planning equation which may be used
to guide decisions concerning the appropriate num-
bers of first- and second-stage sampling units.

For example, consider an educational research
study in which test items are administered to a sample
of students with the aim of estimating the item dif-
ficulty values and mean test scores for the population.
If a simple random sample of n* students is selected
from the population in order to calculate the pro-
portion p who have obtained the correct answer on
an item, the variance of p as an estimate of the
population difficulty value may be estimated from
the following formula (Kish 1965 p. 46):

p(l - p)

varlp) = S =T (13)
This formula ignores the finite population correction
factor because it is assumed that the population is
large compared to the sample size.

If it is specified that the standard error of p,
expressed as a percentage, should not exceed 2.5
percent, then by assuming normality this would give
p £ 5 percent as 95 percent confidence limits for the
population value. The maximum value of p(1 — p)
oceurs for p = 50. Therefore in order to ensure that
these error requirements could be satisfied for all
items, it is necessary to require that

50(100 — 50)

@5P = =g (16)

That is, n* would have to be greater than or
(approximately) equal to 400 in order to obtain 95
percent confidence limits of p + 5 percent.

The variance of a sample mean obtained from a
simple random sample which is greater than or equal
to 400 in size would be less than or equal to s3/400.
Also, the standard error of the sample mean would
be less than or equal to 5/20. Assuming normality,
this would give a 95 percent confidence band of 10
percent of a student standard deviation score when
the sample mean is used as an estimate of the popu-
lation mean.

Now consider the size of a simple two-stage sample
design which would provide equivalent sampling
accuracy to a simple random sample of 400 students.
That is, it is necessary to discover the numbers of
primary sampling units (for example, schools or
classes) and the numbers of secondary sampling units
(students) which would be required in order to obtain
95 percent confidence bands of =5 percent for item
difficulty estimates, and =10 percent of a student
standard deviation score for test mean estimates,

From previous discussion, the relationship
between the size of a complex sample, n., which has

the same accuracy as a simple random sample of size
n* = 400 may be written as:

nf
e e
n o 400 (17)
Since the complex sample is a simple two-stage
cluster sample design, the value of Deff may be
replaced by 1 + (/i — 1)roh in the above expression
to obtain the planning equation:

n, = 400[1 + (A — 1)roh] = ma (18)

where roh is the coefficient of intraclass correlation
for the student measare which is being considered;
m is the number of primary selections; and 7 is the
number of secondary selections within each primary
selection.

It is important to remember that the planning
eguation is derived with the assumption that the two-
stage sample design fits the model of a simple two-
stage cluster sample design. In practical educational
research studies sample designs may depart from this
model by incorporating such complexities as the use
of stratification prior to sample selection, and/or the
use of varying probabilities of selection at each of the
two stages of sampling. Consequently the planning
equation must be seen as a tool which assists with
the selection of a sample design, rather than a precise
technique for predicting sampling errors. The actual
sampling accuracy of a sample design must be deter-
mined after the sample data become available for
analysis.

As an example, consider roh = 0.2 and 7 = 10.
Then,

m= %[1 + (i — )roh]

400
<o (1 + (10 -~ 1)02]

=112 (19)

That is, for roh = 0.2, a simple two-stage cluster
design of 1,120 students consisting of 112 primary
selections followed by the selection of 10 students
per primary selection would be required to obtain
accuracy which is equivalent to a simple random
sample of 400 students.

In Table 1, the planning equation has been
employed to list sets of values for si, m, and n, which
describe a group of simple two-stage cluster sample
designs that have equivalent sampling accuracy to a
simple random sample of 400 students. Two sets of
sample designs have been listed in the table cor-
responding to roh values of 0.2 and 0.4.

The most striking feature of Table 1 is the rapidly
diminishing effect that increasing 7, the cluster size,
has on m, the number of clusters which must be
selected. This is particularly noticeable for both
values of roh when the cluster size reaches 10 to 15
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Table 1
Sample design table for simple two-stage cluster samples
having an equivalent sample size of 400°

roh = 0.2 roh = 0.4

Students per cluster
i Deff  n, m Deffl n, m

1 (srs) 1.0 400 400 1.0 400 400

2 1.2 480 240 1.4 560 280

5 1.8 720 144 26 1,040 208
10 28 1,120 112 46 1,840 184
15 3.8 1,520 102 6.6 2,640 176
20 48 1920 9% B.6 3440 172
30 68 2,720 91 126 5,040 168
40 8.8 3,520 BB 16.6 6,640 166
50 108 4320 87 206 B240 165

a Note: The values of m, the number of clusters selected, have been
rounded upwards to the nearest integer value

students. For example, when roh = 0.4, the selection
of 15 students per cluster from 176 clusters would
have equivalent sampling accuracy to a design in
which 50 students per cluster were selected from 165
clusters. The total sample size in these two cases
differs by a factor of over three—from 2,640 to 8,240,

The selection of an appropriate cluster size for
an educational research study usually requires the
researcher to reconcile the demands of a set of often
competing requirements. A number of authors (for
example, Hansen et al. 1953, Kish 1965, Sudman
1976) have presented descriptions of the use of cost
functions to calculate the optimal or most economical
cluster size for certain fixed costs associated with
various aspects of sampling and data collection.
These approaches l_In'cvide useful guidelines but they
must be considered in combination with the need for
high validity in the collection of data. For example,
ac%u'evement tests which are to be administered in
schools should preferably be given at one point of
time in order to prevent the possibility of those
students who have completed the test being able to
discuss the answers with students who will be given
the test at some later time. Educational researchers
generally cope with this problem by limiting the
cluster size to the number of students who can be
tested under standardized conditions in one test
administration. In most education systems this would
represent cluster sizes of around 20 to 30 students
when tests can be given by group administration.
Much smaller cluster sizes may be necessary for tests
which require individualized administration unless a
large number of test administrators can be assigned
at the same time to a particular school.

A further constraint on the choice of the cluster
size may occur when analyses are planned for the
between-student level of analysis and also at some
higher level of data aggregation—for example, at the
between-school level of analysis. In order to conduct
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analyses at the between-school level, data from stu-
dents are usually aggregated to obtain data files con-
sisting of school records based on student mean
scores. If the number of students selected per school
is too small then estimates of school characteristics
may be subject to large within-school sampling
Errors.

12. pps Two-stage Cluster Sample Designs

The preceding discussion of the simple two-stage
cluster sample design was based on the assumption
that the primary sampling units were of equal size.
In educational research the most commonly used
primary sampling units, schools and classes, are
rarely equal in size. If the sizes of the primary sam-
pling units vary a great deal then problems often
arise in controlling the total sample size when the
researcher aims to select a two-stage epsem sample.

For example, consider a two-stage sample design
in which a schools are selected from a list of A
schools, and then a fixed fraction of students, say
1/k, is selected from each of the a schools. This design
would provide an epsem sample of students because
the probability of selecting a student is a/Ak which
is constant for all students in the population.
However, the actual size of the sample would depend
directly upon the size of the schools which were
selected into the sample.

One method of obtaining greater control over the
sample size would be to stratify the schools according
to size and then select samples of schools within each
stratum. A more widely applied alternative is to
employ probability proportional to size (PPS) sam-
pling of the primary sampling units followed by
simple random sampling of a fixed number of
elements within these units. An exact execution of
the PPS method provides complete control over the
sample size and yet ensures epsem sampling of
elements,

For example, consider a sample of m schools
selected with PPs from a population of M schools
followed by the selection OF a simple random sample
of i students from each of the m schools. Consider
student { who attends school j which has n; members
from the total of N students in the defined target
population.

The probability of selecting student i, Py into this
sample may be expressed as:

py=mxgxt 08 (20)
N ' m N

Since m, 7i, and N are constants then all students
in the defined target population have the same chance
of selection. That is, this PPS sample design would
lead to epsem sampling, and at the same time fix the
total sample size as mi students.

An estimate of the variance of the sample mean,
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Xy, Obtained from the PPS sample design described
above may be obtained from the following formula
(Yamane 1967 p. 255):

1
var(%y;) = wm = 1) ; (& = Eppe (1)

where &, = 1/# Z.x;;, is the mean score for students in
the jth ultimate cluster, and £,,, = 1/m#i %, Zx; = 1/
mZ%;, is the mean score for students in the total
sample.

This formula emphaiszes two important points
which emerged from the discussion of the simple
two-stage cluster sample design. First, the variance
of the sample mean may be reduced (for a given
population of clusters) by increasing the number
of primary selections. Second, the variance of the
sample mean may be reduced (for a given number
of primary selections) by allocating the elements to
clusters in a fashion which reduces the variation
between cluster means.

When accurate information concerning the size of
each primary sampling unit is not available, then pps
sampling is often conducted by using “measures of
size” rather than true sizes. That is, at the first stage
of sampling, the clusters are selected with probability
Eroportional to their measure of size. The difference

etween the actual size of a cluster and its measure
of size is compensated for at the second state of
sampling in order to achieve an epsem sample design
Kish (1965 pp. 222-23) has presented formulas which
demonstrate how to calculate the appropriate
second-stage sampling fractions for these situations.

12.1 The Lottery Method of Pps Selection

An often-used technique for selecting a PPS sample
of, say, schools from a sampling frame is to employ
alottery method of sampling. Each school is allocated

Table 2

a number of tickets which is equal to the number of
students in the defined target population,

For example, consider the hypothetical population
described in Table 2. Only the first seven and final
three schools have been listed. However the total
number of schools and students are assumed to be
26 and 4,000, respectively. Each school is allocated
a number of tickets equal to the number of students
in the defined target population in the school,

If five schools are to be selected then five winning
tickets are required. The ratio of number of tickets
to the number of winning tickets is 4,000/5 = 800,
That is, each ticket should have a 1 in 800 chance of
being drawn as a winning ticket.

The winning tickets are selected by using a random
start-constant interval procedure. A random number
in the interval 1 to BOO is selected from a table of
random numbers and a list of five winning ticket
numbers is created by adding increments of 800. For
example with a random start of 520 the winning ticket
numbers would be 520, 1320, 2120, 2920, and 3720.
The schools which are selected into the sample have
been marked in Table 2. School D corresponds to
winning ticket number 520, and so on to school X
which corresponds to winning ticket number 3,720,
The chance of selecting a particular school is pro-
portional to the number of tickets associated with
that school, Consequently each of the five schools is
selected with probability proportional to the number
of students in the defined target population.

13. The Problem of Nonresponse

In most educational research studies there is usually
some loss of data due, for example, to the non-
participation of schools, or the nonresponse of sam-
ple members within selected schools. The resulting

Hypothetical population of schools and students

Number of students ~ Cumulative tally
School in target populati of stud Ticket numbers
A 50 50 1-50
B 200 250 51-250
Cc 50 300 251-300
D 300 600 30-600
E 150 750 601-750
F 450 1,200 751-1,200
G* 250 1,450 1,201-1,450
X S 100 3,750 3,651-3,750
Y 50 3,800 3,751-3,800
z 200 4,000 3,801-4,000

a Schools selected into final sample
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