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INTRODUCTION

Mathematics has long since become the basic tool of physics and
technology. In recent years, mathematical methods of investigation
have made deep inroads into such fields of knowledge as chemistry,
biology, economics, geology, linguistics, medicine, teaching, psycho-
logy, archeology, law and military affairs.

The school course of elementary mathematics is fundamental to all
mathematical knowledge, and without a firm grasp of this basic course
there can be no question of mastering the higher divisions of the sub-
ject, of applying mathematics in one’s practical scientific and techno-
logical work.

It is a truism that mathematical knowledge does not merely amount
to memorizing a large number of formulas; problem solving lies at
the very heart of mathematics. But to solve a problem does not only
mean to perform a certain number of manipulations. The most import-
ant thing is that the solution be complete and logically flawless. This
is the main stumbling block to the student, for it is much easier to
remember a certain number of formulations or to work through specific
procedures than it is to comprehend the essence of the matter at hand.

The purpose of this text is to help the student think through the
logical processes of a solution, and to teach the student to ask himself
why a certain thing is being done and to be able to answer that que-
stion. It is vitally important that the student be able at every stage
in a solution to realize what has been done and what there is left to do.
In short, the authors have made an attempt to show the student how
to solve problems properly.

This approach has left its imprint on the text. The authors do not
always give the best or shortest solutions, in contrast to what an expe-
rienced mathematician usually does. They strive to view the problem
at hand through the eyes of the student who is not experienced, does
not have at his disposal ingenious techniques, devices or special
methods of solution; they seek the solution in what would appear to be
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the most natural way for the average student. The main thing is that
such a solution is carried through with extreme logical care and is
made as rigorous as possible.

The reader may find that certain simple examples are analyzed in
far too great an amount of detail. But do not hurry to criticize this
approach, for what appears simple may merely be something that has
not been studied in sufficient depth. Also, not all solutions are given
with full details. It is the hope of the authors that this text will not
only be read but studied with pencil and paper in hand. A good deal
is left up to the student to think through by himself. This pertains to
some parts of the theory and certain stages of problem solving.

It must be emphasized that this book is not an ordinary textbook
but one in which certain carefully selected topics of theory and an
abundant amount of problem solving will enable the student to ex-
pand and deepen his knowledge of the school course of elementary ma-
thematics and enable him better to begin the study of higher mathema-
tics in higher educational institutions. The topics chosen here for detai-
led discussion are those that usually cause the most trouble or do not,
for a variety of reasons, receive the attention they deserve. The most com-
plicated and important parts of elementary mathematics are analyzed
and illustrated in detailed problem solving and subsequent discussion.
Particular attention is paid to analyzing typical mistakes of the stu-
dent.

Another point to bear in mind is that the authors consider only the
more traditional topics of elementary mathematics. They do not use
methods of analytic geometry or differential and integral calculus; in
geometry, axiomatics is not dwelt on, ror is the terminology of set
theory made much use of.

This textbook is supplied with a large number of problems in the
form of exercises appended to each section. The answers are given at
the end of the book.

This book is aimed at a broad range of readers, from students of
secondary school to students of teachers’ colleges and universities,
and mathematics instructors in secondary and higher educational in-
stitutions. It can also be used in self-instruction as a supplement to
any standard textbook.

G. Dorofeev, M. Potapov, N. Rozov



Chapter 1 ARITHMETIC AND ALGEBRA

1.1 General remarks on arithmetic and algebra

Of fundamental importance to the student is the fact that all the
concepts he employs in his mathematical discourse must be rigorously
defined, the only exception being, of course, such starting terms as
natural number, equation, point, line, plane, and the like. The requi-
site definitions are of course given in any textbook, but the student
becomes accustomed so soon to using these concepts in solving probl-
ems that he feels more and more inclined (without always realizing it)
to regard the initial notions as intuitively clear and not in any need of
being defined.

The student of mathematics must at all times have a clear-cut
understanding of all fundamental mathematical concepts (we will
return to this subject in Secs. 2.1 and 3.1).

Also important, besides definitions, are mathematical conventions
involving the formation of an entity or of a relation between entities
(indicated by a special symbol). These conventions serve essentially as
a definition of the symbol and must be memorized. For example, the
plus (+) sign is used to indicate the sum of two numbers, the symbol
a? stands for the square of the number @, which is to say the product
a-a; the fact that a is less than b, that is, the number @ — b is negative,
is written conventionally with the aid of the <<sign as a << b.

The student will also recall the signs of weak inequalities: <C
(less than or equal to) and = (greater than or equal to). The student
usually finds no difficulty when using them in formal transformations,
but examinations have shown that many students do not fully compreh-
end their meaning.

To illustrate, a frequent answer to: “Is the inequality 2< 3 true?”
is “No, since the number 2 is less than 3”. Or, say, “Is the inequality
3<< 3 true?” the answer isoften “No, since 3 is equal to 3”. Nevertheless,
students who answer in this fashion are often found to write the re-
sult of a problem asx<C 3. Yet their understanding of the sign < between
concrete numbers signifies that not a single specific number can be
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substituted in place of x in the inequality x<C 3, which is tosay that
the sign <C cannot be used to relate any numbers whatsoever.

Actually, the situation is this: by definition of the sign <C, the
inequality a<< b is considered to be truewhen a<<band alsowhen a = b.
Thus, the inequality 2<C 3 is frue because 2 ic less than 3, and the ine-
quality 3<C 3 is true because 3 is equal to 3.

From this definition of the sign < it follows that the inequality
a << b is not true only when a>b. For thLis reason, the sign < may
be read not only as “less than or equal to” but also as “not greater than”.
Thus, the inequalities 2<C 3 and 3<C 3 are read, respectively, as “2 is
not greater than 3” and “3 is not greater than 3”.

The same applies to the sign ==, which can be read both as “greater
than or equal to” and as “not less than”. By definition of the sign >,
the inequality a=b is valid if a> b or if a=1b; it is not valid only if
a<<b.

Almost every student knows that the function y = 2* is defined for
all real x and can readily draw the graph of the function. However,

2"3 is often a riddle to the student. The best he can usually do is to
indicate how one should give an approximate computation of the num-
ber. But where is the logic? How can you expect to give an approxi-
mate computation of a number without knowing its dcfinition?

To be able to state what the number 2¥3 represents, one has to re-
call the special definition for a number raised to an irrational power,
and of course it is necessary to recall the other definitions of powers
having natural exponents (a zero, rational or negative exponent).
Note that the general definition of a power with a natural exponent n
is inapplicable when n =1 since a product involving a single factor is
meaningless. For this reason, the equation a*=a is the definition of
the first power of a number. In the very same fashion, the zero power
(a°=1) is introduced as a definition.

Now let us find out why the equation

(Va)'=a (1)

holds true. Students often prove this by manipulating the left-hand
member. This is of course permissible, but it simply indicates
that the rules for handling radicals have displaced in the mind
of the student the definition of a radical. Indeed, how does one
define the cube root of a number? By convention, the cube root
of a number a is that number whose cube is equal to a. The cube

root of a number g is conventionally denoted by the symbol }/a.
Thus, equation (1) is merely the formula for the definition of a cube
root with regard for the convention concerning the meaning of the
symbol /. '

The course of algebra includes a considerable number of propositions
(assertions). The view is rather widely held that in geometry one has
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to reason rigorously and there are theorems which require careful
" proofs with the use of definitions but that in algebra there is only one
theorem (Viéte's theorem),* and the rest is just verbal formulations
and formulas. This is not so in the least. Even the formula for the
square of a sum is a theorem. The properties of the logarithmic function
constitute several theorems. As in geometry, every theorem of algebra
must be proved, and all the initial concepts must be defined.

Experience shows that the more ordinary an algebraic statement
is and the more often it is used in problem solving, the more frequently
the student forgets that he should be able not only to state it properly
and employ it, but also to prove it. At all times, particular attention
must be paid to the ability of the student to justify (substantiate)
statements, particularly those which appear to be “self-evident”.

All students are familiar with the formula for solving quadratic
equations, but not so many know its derivation. The same difficulties
are encountered when dealing with theorems involving the solution of
quadratic inequalities. Even if the student obtains correct solutions of
such inequalities, he is frequently not able to explain why, for instance,
a quadratic trinomial with positive leading coefficient is positive
outside the interval between the roots if the latter are real, and is
positive for arbitrary x if the roots are imaginary.

Yet rigorous proofs of the theorems dealing with the sign of a quad-
ratic trinomial are simple in the extreme.

If the quadratic ax?+ bx + ¢, a=0, has real roots x; and x, (which
means its discriminant is positive), then it can be factored:

axt*+bx+c=a(x—x) (x—x,) 2

It is thus evident that for any x exceeding the larger root, both factors
in parentheses, that is (x—x,) and (x — x,), are positive, and for any x
less than the smaller root, they are negative, which means that in
both cases their product (x— x;) (x — x,) is positive and therefore the
right member of (2) has the same sign as the number a. However, if x
lies in the interval between the roots x, and x,, then one of the parenth-
eses in (2) is positive and the other one is negative. And so the sign
of the product in the right member of (2) is opposite that of a.

We have thus proved the following theorem: the value of a quadratic
trinomial ax*+-bx-+-c with positive discriminant (b*—4ac>>0) has for
any x outside the interval between the roots of the quadratic a sign that
coincides with the sign of the coefficient a, and is of opposite sign for any
x inside the interval between the roots. **

* Viéete's theorem states that the sum of the roots of a quadratic equation is
equal to the coefficient (with sign reversed) of the unknown to the first power, and
the product of the roots is equal to the constant term.

** The student himself can state and prove the theorem referring to the case when
the qlz%dratic lri(r)lomial ax®*+bx-+c has equal roots, i.e. when its discriminant is
zero: b? — 4ac=0.
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There is also another theorem that is valid: the value of a quadratic
ax?*+ bx + ¢ with negative discriminant (b*—4ac<<0) has for any x
a sign coincident with the sign of the coefficient a.

To prove this theorem, isolate a perfect square:

ax!+bx+c=a[(x+%>2+ﬁza;2b3] 3)

Since the discriminant 52— 4ac<<0 (it will be recalled that in this case
the quadratic has imaginary roots), it is evident that the expression in
square brackets is positive for any value of x, and the product in the
right-hand member of (3) is, for any x, of the same sign as the number a.

The student is often surprised to encounter difficulties when dealing
with biquadratic equations. There would seem to be no difficulties,
since any biquadratic equation ax*+ bx*+c¢=0 can be reduced to a
quadratic equation by the standard substitution x*=y. But suppose that
the resulting quadratic has imaginary roots y, and y,. Then determin-
ing x requires taking the square root of a complex number. In itself
this is not so complicated and appropriate formulas are given in the
standard textbooks. However, this may be avoided altogether if one
does not resort to the standard substitution but factors the left-hand
member by means of a special transformation.

This transformation consists in isolating a perfect square in the tri-
nomial ax*4- bx?*4-c and gives a valid result only when the quadratic
equation ay®4- by + ¢ =0 has imaginary roots.

However, in this case the perfect square is isolated in a somewhat
different fashion than ordinarily: namely, group together the highest-
degree term and the constant term, and then take their sum and com-
plete the square.

Suppose we have an equation like x*+ bx?+ ¢ =0 (for the sake of
simplicity, we set a= 1, which can always be done readily), and the
equation y?-+ by + ¢ =0 has imaginary roots. Thiscondition means
that the discriminant D = b2—4¢<<0, that is, b<<4¢, whence it is
clear that ¢>0 and |b|<<2/ ¢, that'is b<<2)/c. We can therefore
perfom the following manipulations:

(X br o= (o) bxr=(x*+2V et +c)— 2V c— b) x2
(V) Vot

- <x2+xl/2VE—b—l-VE) (xa—x]/QI/c_—b-l—VE)

The solution of the given biquadratic equation now reduces to that of
two quadratic equations with real coefficients. ,

These rather involved formulas need not be memorized of course;
it is much better to isolate a perfect square in each given instance.
To illustrate, let us solve the equation

2x*+2x24-3=0
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We first reduce the equation to x*+4 x*+ 3/, =0. Its discriminant is
equal to 12—4-%/,=—5<0, and so, applying the foregoing method,
we obtain
By = 2V ) — RV, — 1)

— (VT = (V51w

= (ot xVVo—14+VT) (20— ¥V VE—14+VT,)

We can now solve the quadratics without any fear of complicated
radicals. The first equation

x2+x]/l/§—l+l/%-=0

has a negative discriminant: D =(]/V§— 1 )2—41/% =—1-—V8,
and, consequently, its roots )

_VyE-1
)

l.VV(T-;—l
3

X1,2= -

Similarly we find the roots of the second equation:

xz—x"/l/g—l +V'3, =0
Ve
2

They are
_Vvei
T2

3,4 :t

Two-term equations of the sixth degree (x84 a®= 0) likewise reduce
to the solution of this type of biquadratic equation (expand the left-
hand member as a sum of cubes and apply the technique described
above).

A few words are in order concerning the statements of a number
of definitions and theorems. Textbooks frequently state definitions
and theorems verbally without much use of convenient literal notation.
Occasionally, this is justified, but very often it simply makes for hard-
to-digest formulations. For instance, instead of writing “the square
of the sum of any two numbers is equal to the sum of the squares of
the numbers plus two times their product,” one could more simply
write: “for any numbers a and b we have (a-+b) *= a®*+ 2ab + b2.”
A logarithm is conveniently defined as “a number x is the logarithm of
a number N to the base a (a>0, as=1) if a*=N.”

It is important to develop the habit of converting verbal statements
into formula statements, and vice versa, for this is precisely what is
ordinarily required when proving theorems. For example, to prove
that “the logarithms of numbers exceeding unity to a base exceeding
unity are positive,” we must first introduce the designations: let the
base be a> 1, the number x> 1, and let y = log,x; then establish that
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the number y>0. Rephrasing of this nature can also involve the ne-
cessity of using a definition. Thus, before proving the assertion that
“for a>1 the function y = log, x increases,” one has to recall what an
increasing function is, and then the proof begins thus: “Let a>>1, and
letlx1 and x, be positive numbers, x;<< x,; we will prove that log, x, <<
<log, x5.”

It is not always properly understood that certain formula-type
statements make use of symbols of certain concepts.

It is precisely this that explains why formula (1) is not readily re-

cognized as the definition of a cube root written as the symbol }/, and
that the equation g!%¢s¥ =N (N>0, a>0, as=1) is a symbolic
notation of the “customary” verbal definition of a logarithm which
employs the convention of denoting the logarithm of a number N to a
base a in the form of log,N.

Exercises

1. What is (a) a periodic decimal fraction, (b) a'ls, () a quadratic equation,

(d) V1T, (e) the modulus (absolute value) of a complex number, (f) a> b, (g) the sum
of a nonterminating decreasing geometric progression?

2, State which of the following is a definition, an axiom or a theorem: (a) an
equation is unaltered if both members are multiplied by the same number, (b) the

1
modulus of any number is nonnegative, (c) a /'=3;/ a, (d) the graph of the function
y=—3x passes through the origin of coordinates.

3. Is the following equation always valid: YV ar V b=V ab?

4. If the discriminant of a quadratic equation is positive, then the equation has
two distinet real roots. State the converse theorem, the inverse and the cont-
rapositive. Which of these theorems are valid?

5. Prove that if the roots of a quadratic equation are imaginary, then the discri-
minant is negative.

6. Using formulas, state the condition that at least one of the numbers ay,.. .,
a, is equal to the number c.

7. Use a single equation to denote that at least two of the numbers a, b, ¢ are
equal to zero.

8. What can be said about the numbers a and & if 1/a < 1/6? From what pro-
perties of the function y=1/x can we obtain an answer to this question?

9. Using mathematical relations, state the assertion that the function y=3¢--
—x? increases when the argument varies in the interval from —1 to 1.

10. Is the condition that the sum of the digits of a number is divisible by 3 a
necessary, sufficient or necessary and sufficient condition for the number to be di-
visible by 12?

1.2 Integers, rational numbers, irrational numbers

Problems involving various parts of arithmetic often give tro-
uble. This is frequently due to the fact that arithmetic is studied
in the junior forms where many results are given without proof, and
the material is actually never taken up again. Yet this does not in
the least diminish the significance of such sections of arithmetic as
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the divisibility of the natural numbers, the propert
the theory of proportions, etc.

The senior student must know the statements of these results and
should also be able to prove them (say, to derive a given criterion of
divisibility).

To illustrate, let us prove the criferion for divisibility by 9. Given a
natural number N= a,a,_, ...a,a,a,. Here, the symbol ana, _,...a,a,
(where the bar on lop means that the digits are not to be thought
of as a product of the numbers a,, ..., a) denotes an (n-+1)-digit
number, where a,, @,_,, ..., @, a, are the digits of the appropriate
orders of the number* (so that 1<<a,<< 9, 0<<a, ;<< 9, ..., 0K
<a,<9, 0<< a<< 9). We have to prove two assertions: (a) if the sum
of the digits a,4-a,_,4-...+a,4a, of the number N is divisible by
9, then the number N itself is divisible by 9; (b) if the number N is
divisible by 9, then the sum of its digits is divisible by 9.

Inhaccord with the positional principle of the decimal number system,
we have

Quly_y v Qyy8,=0a,-10"+a,_,- 10"+ ... +4a,-102+a,-10+q,
Since 10*=99 ... 941 for any natural £>1, we get

k times
=[a,99...94a,.,99 ... 94+...+a,-94¢q,-9)
n times n—1 times

+(an+an—l+"'—*-a2+al+a0) (1)

It is obvious that the number in square brackets is divisible by 9,
for it is a sum of n terms, each of which is divisible by 9. If the sum
@t ..o+ a is divisible by 9, then from (1) it is clear that the num-
ber N is also divisible by 9. The proof of Assertion (a) is complete.
Assertion (b) likewise follows from a consideration of (1): if the left
member (the number N) is divisible by 9 and since the first summand
of the right member (the number in square brackets) is divisible by 9,
it follows that the second summand (the sum of the digits of N) must'
be divisible by 9.

In the solution of problems, various arithmetical facts are someti-
mes useful. We shall now review a number of them using literal sym-

bolism. .
If we have two integers** ¢ and b, 6>>0, then there is a unique in-
teger ¢ and a unique integer r, 0<{r <<, such that

a=bq+r (2)

* It is natural to regard the highest-order digit as nonzero.
** Recall that the numbers 1, 2, 3, . .. are called natural numbers (the positive
integers), and the numbers —2, —1, 0, 1,2, ... are the infegers (whole numbers).

It is convenient to write the set of integers as 0, 4-1, +2,....
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Equation (2) is simply the division of a number a by a number b with
a remainder. In particular, from (2) it is clear that any even number
is of the form 2k, where & is an integer, and any odd number may be
represented as 2n+-1, where n is an integer.

If we have a natural number N exceeding unity, and if N=n{"

* is the decomposition of this number into prime factors (here,
n s , ny, are distinct prime divisors of N, and «,, ..., a; represent
¢he number of their repetitions in the decomposntxon of N) then any
divisor of N is of the form D=nf" ... nf* where0<{B,< a4, ...,
0 Br<< e

If we have natural numbers a,, ..., a,, then their common divisor

is a natural number which exactly divides each of the numbers a,,

.., ap. The largest of these common divisors of the numbers a, ...,
a, is termed the greatest common divisor. If the greatest common
divisor is equal to 1, then the numbers q,, ..., a, are relatively prime
(coprime).

If a natural number N is divisible by each of two relatively prime
integers q,, a;, then N is also divisible by the product a,a, of these
integers.* Furthermore, if the product NM of natural numbers N and
M is exactly divisible by a natural number D and if M and D are re-
latively prime, then N is divisible by D.

“Finally, it is well to recall the following property: one of a sequence
of n integers k41, k+2, ..., k+n, where & is an arbitrary integer,
is definitely divisible by n.

Let us consider some examples of the use of the properties of integers
in solving problems which involve divisibility.

1. Prove that for an arbitrary even n the number N=n3+20n is divi-
sible by 48.

Quite naturally, a direct verification of the fact that the assertion
holds true for n=2, 4, 6, ... does not solve the problem since we are
not able to run through all the even numbers. Hence, we have to give
a proof that will hold true for any even n.

An even number n can be written in the form n=2k, where & is
an integer; therefore N=8k (k?*+5). If we demonstrate that for any

" integer £ the number & (k24-5) is divisible by 6, it will be clear that
N is divisible by 48.
We perform the following obvious transformation:

“k(k2+5)=Fk(k2—1+6)=(k—1)k (k4 1)+ 6k (3)

We see that the second summand in the right member of (3) is divisible
by 6. Now the first summand on the right is a product of three succes-
sive integers, and for this reason one of them is definitely divisible

* It is easy to see that if a; and a, are not relatively prime, then the number ¥
is not necessarily divisible by the product aya, (give an examplel).



