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Preface

Dedekind and Weber’s 1882 paper on algebraic functions of one variable is one
of the most important papers in the history of algebraic geometry. It changed the
direction of the subject, and established its foundations, by introducing methods
from algebraic number theory. Specifically, they used rings and ideals to give rig-
orous proofs of results previously obtained, in nonrigorous fashion, with the help
of analysis and topology. Also, by importing ideas from number theory, the paper
revealed the deep analogy between number fields and function fields—an analogy
that continues to benefit both number theory and geometry today.

The influence of the paper is obvious in 20th-century algebraic geometry, where
the role of arithmetic/algebraic methods has increased enormously in both scope
and sophistication. But, as the sophistication of algebraic geometry has increased,
so has its detachment from its origins. While the Dedekind-Weber paper continues
to be cited, I venture to guess that few modern algebraic geometers are familiar
with its contents. There are a few useful commentaries on the paper, but those
that I know seem to focus on a few of the concepts used by Dedekind and Weber,
while ignoring others. And, of course, fewer mathematicians today are able to read
the language in which the paper was written (and I don’t mean only the German
language, but also the mathematical language of the 1880s).

I therefore believe that it is time for an English edition of the paper, with
commentary to assist the modern reader. My commentary takes the form of a
Translator’s Introduction, which lays out the historical background to Dedekind
and Weber’s work, plus section-by-section comments and footnotes inserted in the
translation itself. The comments attempt to guide the reader through the original
text, which is somewhat terse and unmotivated, and the footnotes address specific
details such as nonstandard terminology. The historical background is far richer
than could be guessed from the Dedekind-Weber paper itself, including such things
as Abel’s results in integral calculus, Riemann’s revolutionary approach to complex
analysis and his discoveries in surface topology, and developments in number theory
from Euler to Dedekind. The background is indeed richer than some readers may
care to digest, but it is a background against which the clarity and simplicity of
the Dedekind-Weber theory looks all the more impressive.

I hope that this edition will be of interest to several classes of readers: historians
of mathematics who seek an annotated edition of one of the classics, mathematicians
interested in history who would like to know where modern algebraic geometry came
from, students of algebraic geometry who seek motivation for the concepts they are
studying, and perhaps even algebraic geometers who have not had time to catch up
with the origins of their discipline. (It seems to an outsider that just the modern
literature on algebraic geometry would take more than a lifetime to absorb.)



viii PREFACE

This translation was originally written in the 1990s, but in 2011 I was motivated
to revise it and write an introduction in order to prepare for a summer school
presentation on ideal elements in mathematics. I have also compiled a bibliography
and index. The bibliography is mainly for the Translator’s Introduction, but it is
occasionally referred to in the commentary on the translation, so I have placed it
after the translation.

The summer school, PhilMath Intersem, was organized by Mic Detlefsen, and
held in Paris and Nancy in June 2011. I thank Mic for inviting me and for support
during the summer school. T also thank Monash University and the University of
San Francisco for their support while I was researching this topic and writing it up.
Anonymous reviewers from the AMS have been very helpful with some technical
details of the translation, and I also thank Natalya Pluzhnikov for copyediting.
Finally, I thank my colleague Tristan Needham, my wife Elaine, and son Robert
for reading the manuscript and saving me from some embarrassing errors.

John Stillwell
South Melbourne, 1 May 2012
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Translator’s Introduction

1. Overview

Modern algebraic geometry has deservedly been considered for a long
time as an exceedingly complex part of mathematics, drawing prac-
tically on every part to build up its concepts and methods and in-
creasingly becoming an indispensable tool in many seemingly remote
theories. It shares with number theory the distinction of having one
of the longest and most intricate histories among all branches of our
science, of having always attracted the efforts of the best mathemati-
cians in each generation, and of still being one of the most active areas
of research.

Dieudonné (1972), p. 827.

It seems to me that, in the spirit of the biogenetic law, the student who
repeats in miniature the evolution of algebraic geometry will grasp the
logic of the subject more clearly.

Shafarevich (1994), p. vii.

Richard Dedekind and Heinrich Weber first worked together in 1874, as co-
editors of Riemann’s collected works. Weber was called into this project as a
replacement for Clebsch, who had died unexpectedly of diptheria, and his expertise
in mathematical physics complemented Dedekind’s expertise in pure algebra and
analysis. The fruit of this collaboration was their joint paper, Dedekind and Weber
(1882), a ground-breaking contribution to the understanding and advancement of
Riemann’s ideas. Theorie der algebraischen Functionen der einer Verdanderlichen
(theory of algebraic functions of one variable) revolutionized algebraic geometry
by introducing methods of algebraic number theory into the subject. This made
possible the first rigorous proofs of theorems discovered with the help of physical
intuition, and opened the way to an extension of algebraic-geometric concepts from
the complex numbers to arbitrary fields.

In a sense, the paper is a sequel to Dedekind (1877), a long paper in which
Dedekind expounded his theory of ideals and their applications to number theory.
However, Dedekind and Weber give a self-contained exposition of their theory,
which is at some points simpler than the ideal theory for algebraic numbers.

Like Dedekind (1877), the Dedekind-Weber paper starts with the concept of
field, but this time it is a field of functions, the “algebraic functions of one variable.”
Following the example of number theory, they distinguish the ring of integers of this
field, then the primes, and finally the ideals. As in number theory, it turns out that
ideals are crucial to complete the analogy with the traditional arithmetic of integers.
However, in the context of algebraic functions, ideals prove to be important in other
ways, and indeed a more general idea that they call “polygons” is needed.

1



2 TRANSLATOR'S INTRODUCTION

To show the value of these new ideas, Dedekind and Weber gave new proofs of
two great theorems: Abel’s theorem of Abel (1841) and the Riemann-Roch theorem
of Riemann (1857) and Roch (1864). These theorems are as timely today as they
were in 1882, but they require some introduction, which Dedekind and Weber do
not supply. I would therefore like to present some historical background to these
theorems, and to the theory of algebraic functions itself, with copious examples. In
some ways, this introduction is a sequel to my introduction to Dedekind (1877),
though I will recapitulate some points to keep it self-contained.

In preparing this material I have been greatly assisted by the first 35 pages of
Dieudonné (1985), an extraordinarily rich and insightful account of the development
of algebraic geometry up to the Dedekind-Weber paper, and Koch (1991), which
places this development against the general background of 19th-century mathemat-
ics. Another helpful overview is the chapter by Geyer in Dedekind et al. (1981).
As will become apparent, much of the algebra in modern algebraic geometry arose
from problems in classical analysis, particularly the integral calculus. The first such
result was the fundamental theorem of algebra, originally motivated by the desire
to factorize polynomials for the purpose of integrating rational functions.

2. From Calculus to Abel’s Theory of Algebraic Curves

What a discovery is Abel’s generalization of Euler’s integral! I have
never seen such a thing! But how can it be that this discovery, which
could be the most important made in the mathematics of this century,
and which was communicated to your Academy two years ago, has
escaped the attention of you and your colleagues?

Jacobi (1829) letter to Legendre, 14 March 1829.

When calculus was developed in the 17th century, the first really hard problems
were problems of integration. This was especially true of the Leibniz approach,
which sought integrals in “closed form,” that is, in terms of functions from the
small class known as “elementary.” These are the algebraic functions, together
with functions arising from them by composition with the exponential function and
its relatives, the logarithm, circular functions, and inverse circular functions.

The only broad class of functions that can be integrated in Leibniz’s sense
are the rational functions, that is, the functions of the form r(z) = p(x)/q(z),
where p and ¢ are polynomials. Any rational function can be integrated because
the denominator ¢(z) may be split into linear factors (z — a), by the fundamental
theorem of algebra, and the quotient p(z)/q(x) may then be decomposed into partial
fractions of the form 2™ /(z — a)™, which have rational integrals in all cases except

dx
= log(xz — a) + constant.
r—a

Thus the integral of a rational function is itself a rational function, with the possible
exception of some terms of the form log(z — a).

(In elementary calculus courses this simple picture is confused by the presence
of partial fractions such as 1/(z% + 1), the integral of which is usually taken to be
tan~! z + constant. However, we have

112 12
241 -4 x+7i




2. FROM CALCULUS TO ABEL'S THEORY OF ALGEBRAIC CURVES 3

so we can also express [ dz/ (z2 + 1) as a sum of logarithms, namely

dr 1 dx l'clac_l1 ) 11 )
21 %)z ai) zrio z o8 g lelE T

This was first done, albeit with some confusion about the meaning of complex loga-
rithms, by Johann Bernoulli (1702). Around 1800, when the fundamental theorem
of algebra was finally proved, the meaning of complex numbers became better un-
derstood, and it became increasingly clear that they play an important role in the
theory of integrals.)

When the rational functions are extended by as little as the square root func-
tion, the resulting integrals quickly fall outside the class of elementary functions.
A famous example is the lemniscatic integral

Toodt
sl™!(z) = / —_,
(z) W
so-called because it expresses the arc length of the lemniscate of Jakob Bernoulli
(1694), shown in Figure 1.

FIGURE 1. The lemniscate of Bernoulli

This curve has cartesian equation (z2+y?)? = 22 —y?, and its arc length cannot
be expressed in terms of elementary functions of  and y. However, Fagnano (1718)
discovered that the lemniscatic integral satisfies an arc-length doubling formula

T gt 2zv1—z7/(1+a*) dt
2 | ==, i
and Euler (1768) generalized Fagnano’s formula to an arc-length addition formula
” /z & /y d /u\/ﬁwﬁ?ﬂ/mz?y?) dt

o Vi—tt Jo VI—tt o V-t
These results are analogous to properties of the inverse sine integral

6?—sin_1‘r—/IL

) 0o V1—1t2’

which are derivable from basic properties of the sine and cosine functions. For
example, the familiar angle-doubling formula

sin20 = 2sinfcosf = 2sinf\/1 — sin? 6,
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implies that
20 = sin~!(2sin #V/1 — sin” 6),

which gives the angle-doubling formula for integrals:

T dt 2zvV/1—x2 dt
23in“1m=2/ —=/ —_—
0o V1—t2 0 Vv1—t2
And the familiar angle addition formula,

sin(0 + ) = sinf cos ¢ + cosfsin @

=sinfy/1 —sin? ¢ + sin V1 —sin’ 6,

implies
6+ o =sin? (siné’\/ 1 — sin? p + sin /1 — sin? 0> ;

which gives the addition formula for arcsine integrals:

T dt vt i HVI=2 g
/ \/1—t2+/0 V1t /0 vi—t2

Thus in both cases we find that a sum of two integrals, [, f(t)dt + [} f(t)dt,
can be simplified to a single integral, foz f(t)dt, where z is an algebraic function of
x and y.

It so happens that the integrand 1/v/1 — ¢2 of the inverse sine integral can be
rationalized by the change of variable ¢t = 2s/(1 + s%)—not so surprisingly, since the
inverse sine is an elementary function—so we can eliminate the integral altogether
in this case. However, in the case of the lemniscatic integral, reducing the sum of
two integrals to one is the best we can do. The integrand 1/v/1 —t* cannot be
rationalized by a change of variable, and indeed Jakob Bernoulli (1704) made a
remarkable attempt to prove this, using the theorem of Fermat that the equation
X* —Y* = Z? has no solution in positive integers X,Y, Z. His attempt fell short,
because it is not enough to know this theorem for integers X, Y, Z. But it is enough
to know it for polynomials X (t),Y (t), Z(t), and indeed polynomials behave enough
like integers that Fermat’s proof can be replayed for polynomials, though no one
noticed this in Bernoulli’s time.

Thus there is an essential difference between the ordinary sine function and
the lemniscatic sine function, sl, defined as the inverse of the lemniscatic integral.
Nevertheless there are enough similarities to enable the development of a theory of
the lemniscatic sine function. This was begun by Gauss in 1796, and extended to
a general theory of the so-called elliptic functions by Abel and Jacobi in the 1820s.
Like the circular functions, the elliptic functions satisfy addition formulas and they

are periodic, only more so. Just as the sine and cosine have period 27, in the sense
that

sin(f + 2w) =sinf, cos(f + 2mw) = cos b,

an elliptic function f has two periods wi,ws, in the sense that

flz+w) = f(z), [f(z+w2)=f(2)
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The periods wy,wy are complex numbers whose ratio is not real. For example,
Gauss discovered that the two periods of sl are w and i, where

/1 dt

w=2 N

0o V1—tt

The double periodicity of elliptic functions was first explained by algebraic manip-
ulation of integrals, but Riemann (1851) found a far more transparent geometric
explanation (not unlike explaining the period 27 of sine and cosine by referring to
the circle), which we will come to later.

The theory of elliptic functions was the first great advance in integral calculus
since the integration of rational functions. Nevertheless, this theory only scratched
the surface of a huge and important world of calculus: the integrals of algebraic
functions; that is, integrals of the form

/ g(s,t)dt, where s satisfies a polynomial equation P(s,t) = 0.

The lemniscatic integral is [ dt/s, where s* = 1 —t%, and the general theory of
elliptic functions deals with the integrals [ dt/s where s equals a polynomial of
degree 3 or 4 in t. But what can one say, for example, about the integral

/ coodt
o VI—16~
It turns out that this integral does not satisfy an addition formula
Toodt Yoodt [ dt
[ =) == ==
where z is an algebraic function of # and y. However, Abel (1841) discovered a
wonderful substitute for an addition formula: any sum of integrals,

ot +/fm dt
o VIt o VIt

1s equal to the sum of two integrals

L dt 2 dt . .
/0 ﬁ + /0 \/1———156’ where zj, 29 are algebraic functions of z1,...,z;,,

plus some “trivial” algebraic and logarithmic terms.
This result is only an illustration of the amazingly general:

Abel’s Theorem. For any integral of the form [ g(s,t) dt, where g is a rational
function and s and t are connected by a polynomial relation P(s,t) =0, there is a
number p such that any sum of integrals

T Tm
/ g(s,t)dt+---+/ g(s,t)dt
0 0

equals a sum of at most p integrals

21 Zp
/ g(s,t) dt +--- +/ g(s,t) dt,
0 0

where z1,...,2, are algebraic functions of x1,..., Ty, plus terms that are either
rational functions or their logarithms.

The number p depends only on the polynomial P. It was later called the
genus of the curve defined by P(s,t) = 0, and it too found a natural geometric
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interpretation in Riemann (1851), as we will see in the next section. In particular,
the curve s2 = 1 — t* that yields the lemniscatic integral has genus 1, because any
sum of lemniscatic integrals reduces to one integral by repeated application of the
addition formula (*). More generally, any elliptic curve' s?> = q(t), where q(t) is
of degree 3 or 4 without repeated roots, is of genus 1, because there is an addition
formula for the corresponding integral [ dt/s.

Finally, any curve s = P(w), t = Q(w) parameterized by rational functions P
and @ is of genus zero, because the corresponding integral [ g(s, ) dt is the integral
of the rational function g(P(w), Q(w))Q’ (w).

Abel submitted his paper to Cauchy in 1826 but, due to inattention by the
mathematicians of the Paris Academy, it was not published at the time. It was
noticed by Jacobi, however, who in 1829 wrote the letter to Legendre quoted at
the beginning of this section. Even the intervention of Jacobi failed to wake up the
Academicians, and Abel’s paper did not appear until 1841, long after Abel had died.
There is a further excruciating twist to this story of neglected genius. The other
mathematician notoriously ignored by the Paris Academy, Evariste Galois, also
seems to have discovered Abel’s theorem, independently of Abel, but some years
later. It is mentioned in his letter to Auguste Chevalier, Galois (1846), written
on the night before his death in 1832. He states the theorem without proof, but
with some additional remarks that suggest that he already had some of the ideas
developed by Riemann 20 years later.

3. Riemann’s Theory of Algebraic Curves

It is quite a paradox that in the work of this prodigious genius, out
of which algebraic geometry emerges entirely regenerated, there is
almost no mention of algebraic curve; it is from his theory of algebraic
functions and their integrals that all of the birational geometry of the
nineteenth and the beginning of the twentieth century issues.

Dieudonné (1985), p. 18.

In the 1850s, two papers by Bernhard Riemann? completely changed the face
of complex analysis and algebraic geometry. Riemann (1851) and Riemann (1857)
viewed algebraic curves in a new way, as what we now call Riemann surfaces. In
retrospect, this development seems unsurprising and even inevitable. Since around
1800, mathematicians had become used to the idea that the complex “line” C was
geometrically a plane, so the idea that a complex “curve” should be some kind
of surface was just over the horizon. Nevertheless, Riemann’s description of these
surfaces was received skeptically by most of his contemporaries. The underlying
topological ideas, though very intuitive and persuasive, did not yet have a rigorous
foundation. And, to make matters worse, Riemann made connections between
topology and analysis by appealing to physics. Then, as now, this was considered
mathematically dubious.

IThe name “elliptic” became attached to the curves of genus 1 because the corresponding
integrals (“elliptic integrals”) include the integral for the arc length of the ellipse. Unfortunately,
the ellipse itself has genus 0, and hence is not an elliptic curve.

zPage numbers in references to these papers in this Introduction refer to the original papers.
However, many readers will find it more convenient to consult the English translation of Riemann’s
works, Riemann (2004). To make this easier to do, I also give section numbers, which are the
same in the original papers and in the translation.
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But if Riemann’s proofs were not rigorous, his results were so stunning that
they demanded explanation, and this became the task of later mathematicians,
among them Dedekind and Weber.

Today, the necessary foundations of topology and analysis have been con-
structed, so we have the luxury of describing Riemann’s ideas in informal terms
similar to his own. I think that it is useful to do so, because some of the algebraic
concepts devised by Dedekind and Weber are scarcely comprehensible if one has
not seen the topological concepts they replace. In particular, I doubt that readers
should be confronted with the “ramification ideal” before they have seen a picture
of “ramification,” or “branching.” Such a picture was given in Neumann (1865),
the first textbook on Riemann’s theory (Figure 2).

FIGURE 2. Neumann’s picture of a branch point

This picture springs to mind when one attempts to visualize the curve y? = z
for complex variables x and y or, equivalently, the “two-valued function” y = 4/z.
Riemann imagined the two values ++/z and —/z lying above x on a two-sheeted
covering of the plane C, as shown in Figure 3. Notice that, as x moves continuously
once around a circle, the corresponding point /r moves continuously around the
lower sheet, then the upper sheet, of the two-sheeted covering, eventually taking the
value —y/x that also lies above x. Thus the function /= becomes “single-valued”
on the covering surface.

The point x = 0 at which the two sheets fuse is called a branch point or
ramification point of the covering, because one used to speak of the “branches of
the multi-valued function”—in this case the two “branches” are \/z and —/z. The
awkward feature of the picture—that the two sheets appear to pass through each
other—is a result of representing the relation y = 22 in three dimensions, one fewer
than the four dimensions it really requires. One can visually add a fourth dimension,
“shade of gray,” to the sheets to avoid their meeting in the fourth dimension. This
has actually happened in the Neumann picture, where one sheet is white where
they appear to meet and the other is dark gray.
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3m/2

FIGURE 3. Branch point for the square root

Just as the curve y> = z has a branch point of the two sheets at 2 = 0,
the curve y™ = x has a branch point of n sheets. An arbitrary algebraic curve
P(z,y) = 0, where P is a polynomial of degree n, is an n-sheeted covering of C
with a finite number of branch points. Since behavior of a curve at infinity is
important, Riemann (1857) (Section 1, p. 117) extended C by a point oo, and the
resulting set C U {oo} can be viewed as a sphere via the stereographic projection
map shown in Figure 4. This idea is made explicit in Neumann (1865), p. 132.
Under stereographic projection, each point z € C corresponds to a point 2z’ on the
sphere other than the north pole N, and N itself naturally corresponds to oco.

FIGURE 4. Stereographic projection of the sphere to C U {co}

Corresponding to this completion of C to a sphere, we have a completion of each
algebraic curve to a finite-sheeted covering of the sphere with finitely many branch
points. Riemann realized that the covering surface S is topologically characterized
by none other than Abel’s number p, later dubbed the genus (or Geschlecht in Ger-
man) by Clebsch (1865). Riemann described p topologically as half the number of
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closed cuts needed to make S simply connected (that is, such that any closed curve
can be contracted to a point). In this case the resulting simply connected surface
is a polygon with 4p sides. M&bius (1863) gave an even simpler interpretation of p,
by showing that each Riemann surface is topologically equivalent to a member of
the sequence of surfaces shown in Figure 5, namely, the one with p “holes.”

(o=

FIGURE 5. Riemann surfaces of genus 0, 1, 2, ...

As an example, consider the elliptic curve
v =x(x—1)(z+1).
This curve is a two-sheeted cover of the sphere, with branch points like that shown
in Figure 3 at @ = 0,1, —1, c0. If we slit the sheets by cuts from 0 to oo, and from

1 to —1, then, in order to obtain the branching, the edges of the cuts need to be
identified so that the like-labeled edges shown in Figure 6 come together.

FIGURE 6. How edges are identified at branch points

But we can make a surface that is topologically the same by separating the two
sheets before making the identifications, as shown in Figure 7.

The resulting surface is topologically a torus, shown in more familiar form in
Figure 8. Thus Abel’s number p = 1 agrees with the topological genus of the torus,
because the torus has one “hole.” (Notice that if 0 and oo are the only branch
points, as is the case with y? = z, then the result of joining the two sheets is
topologically a sphere, so the genus of y? = x is zero.)

Moreover, as promised in the previous section, we can now see the reason for
the two periods of elliptic functions associated with the curve y? = z(x — 1)(z + 1).
The periods are integrals over independent closed paths on the torus surface, such
as the paths ', and C, shown in Figure 8.



