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PREFACE

The electronic structures of inorganic complexes are to a large extent decided by
the fact that these ions and molecules have a transition-metal atom situated at a
center of high symmetry. The high degeneracy of the metal d- and f-valence orbitals,
so characteristic of central symmetry, is therefore only removed in part. Since,
furthermore, the degenerate molecular orbitals of the complex may only be
partially filled with electrons, the electronic-term problem bears many similarities
to that encountered in the theory of atomic spectra.

The analogies between the theory of atomic structures and the electronic
structures of complexes are therefore many. Nevertheless, the all-important fact
is that inorganic complexes are not just pure metal ions in disguise. As
realized by Van Vleck in 1935 they are true molecular entities, and should be
treated as such. The only existing theory which can give a simple consistent picture
of the ground and excited molecular electronic states is the molecular orbital
theory. Consequently, in this book the theory of electronic structures of complexes
is developed solely from this point of view. Furthermore, the aim has been to
characterize rather than to calculate.

Most chemists working with the electronic structures of inorganic transition-
metal complexes have arrived at the subject via an education in inorganic
chemistry. Using a variant of a simplified electronic theory, their aim is usually
to extract parameters for a class of complexes and then to arrange these in some
series. On the other hand, the solid-state physicists working in this field will often
be content to write down an “effective hamiltonian” for one compound and add
terms to this until the experimental numbers can be reproduced. Both groups there-
fore strive to express their experimental findings using some parameterized theory.
Unfortunately the temptation is to elaborate an approximate theory and to
introduce an increasing number of loosely defined “effects” in order to “explain”

vii



vili PREFACE

the movements of the parameters. For the uninitiated this can easily lead to great
confusion, and there is little reason to expect that deeper insight can be gained in
this way.

It is well known that a model may correctly describe certain features in one
area of a research field but be hopelessly inadequate in others. As an obvious
example the crystal field concept springs to mind. In order to avoid the many
pitfalls which await a molecular spectroscopist when interpreting experimental
results or when building theoretical models, it is therefore imperative to possess a
sound knowledge of quantum chemistry.

I'have tried to write such a text which twenty years of experience have taught
me might be of help to a chemist wishing to work with the electronic structures
of inorganic complexes. Rigorous mathematical derivations have not been
stressed. Hopefully, enough details have been given so that the essential lines of
development are transparent. I have furthermore assumed that the reader
commands a working knowledge of group theory. Calculational methods,
exemplified by ab initio and semi-empirical procedures have not been dealt with.
No attempts have been made to cover the literature, either from a theoretical or
experimental point of view. I have merely picked out what I considered to be the
important ideas and developments, and I have illustrated them by using simple
examples.

I wish to thank my colleagues Professor Dr. Jens Peder Dahl and Lektor Dr.
Aage E. Hansen for many helpful discussions on the material in this book, and I
am greatly indebted to Mrs. E. Ottonello for the preparation of the manuscript.

CJB
March 1977
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CHAPTER

ONE
THE ELECTRONIC STATES

1-1 THE BORN-OPPENHEIMER APPROXIMATION

The whole of chemistry is a reflection of the behavior of electrons in various
potential fields. Experience has shown us that the conduct of electrons cannot be
described using the classical laws of motion. Hence chemistry is one huge
manifestation of quantum phenomena. Unfortunately, even for a small molecule
a reasonably exact quantum-mechanical solution of the molecular Schrodinger
equation is a formidable task. In order to gain some insight into electronic
behavior, it is therefore necessary to introduce simplifying approximations. The
nature of such approximations must of course be adjusted to the phenomena in
which we are interested. We must take care not to introduce artificial features into
the system, and at the same time not to throw away important traits.

The molecules and ions which we shall be interested in here contain so many
nuclei that the rotational structure is washed out. On the other hand, in many
interesting cases, the electronic transitions will show some vibrational structure.
The wave functions for a molecule are dependent both on the nuclear and
electronic coordinates. The first and fundamental approximation we shall
introduce is the separation of the electronic and nuclear motions. This is performed
using the so-called Born-Oppenheimer approximation.!+?

Let us designate the positions and masses of the nuclei u by (Q, M,)
and the positions and masses for the electrons by (r;, m), where all the vectors
r and Q are referred to a laboratory-fixed coordinate system. The total non-
relativistic hamiltonian for a molecular system of N nuclei and n electrons is

hz

hz
H=-Y-—V2_ 2 4 v, 1-1
Lo Vi X Vi Ve Q) (1-1)

1



2 MOLECULAR ELECTRONIC STRUCTURES OF TRANSITION METAL COMPLEXES

V(r, Q) is the potential energy term equal to

2
Vi, Q) = Z - Z ZZe +Z e
IQu :l [Q.- Qi

meSeseen (1-2)
p<v <5 ln— 1

Let us now suppose that all the nuclear masses are infinite. Clearly, this will
quench the nuclear motions, leading to an “electronic” hamiltonian of the form

Hg= —zi: 2%21 Vi + V(r,Q) (1-3)

The “electronic” Schrédinger equation is then defined as

A gVi(r, Q) = W(Q)¥i(r, Q) (1-4)

Both W,(Q) and W,(r, Q) are seen to contain the nuclear positions Q as para-
meters, and are indeed continuous functions of the 3N nuclear coordinates. In
principle, we could solve Eq. (1-4) for all values of the 3N nuclear coordinates,
and for each nuclear arrangement we would obtain a complete set of electronic
wave functions W,(r, Q) and eigenvalues W,(Q). '

Introducing the “electronic” hamiltonian into the molecular hamiltonian of
Eq. (1-1), this may be rewritten

h2

H=H— Y —V2 1-5
E ; 2M‘, " ( )
We now use the variational principle to solve the molecular Schrodinger equation,

and as our variational wave function we take the finite expansion

lP:

t

M=

%1(Q)¥.(r, Q) (1-6)

1

The use of a trial wave function of this form is inspired by the fact that had the
solutions to the electronic Schrodinger equation been independent of the nuclear
coordinates, a single product function would be the exact solution to the
hamiltonian in Eq. (1-5).

Without loss of generality we can take W,(r, Q) to be real and normalized

j\q},(r, Q)|2dr=1 (1-7)

Notice in particular that W (r, Q) is assumed normalized for all values of Q.
Using Eq. (1-5) together with Eq. (1-6) now leads to

_Z 2?\4 {Z\P r, QV;x(Q) + 2ZV ¥, (r, Q)V,.(Q) + ZX: (Q)V2W(r, Q)}
+ Y QP Q) =W Y #(QW,(r.,Q  (I-8)

Multiplying Eq. (1-8) by W,(r,Q), and integrating over the electronic co-
ordinatés making use of the orthonormal properties of the set ‘¥,(r, Q), leads to
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2

- Top Vin(Q) + W(Q(@ - Wi(@)
2M uXt(Q)
2M : )| V2| ¥i(r, Q)1(Q) = 0 (1:9)

If we define an operator C,, equal to

Cu,tzz 2<‘P (r, Q)| V| Wr, QOV, 2| Wir, Q)

(1-10)
we can write Eq. (1-9) as

h? 2 "
{_ Z M Vlzl + Wu(Q) -W- Cu,u} 1(Q) — Z Cui2:(Q) =0 (1-11)

uFt

The set (1-11) of coupled differential equations can be used to determine the
expansion coefficients y,(Q). In principle we can get the total wave function for the
molecule by solving the electronic Schrédinger Eq. (1-4) for all values of Q, thereby
getting all of the electronic wave functions, ‘P'(r, Q). These should then be multiplied
by the nuclear wave functions, x(Q), to obtain Eq. (1-6). The Egs. (1-11) can then
be used to determine the complete wave functions to any degree of accuracy.

This method to derive the total wave function for a molecular system is called
the Born—Oppenheimer separation; it is seen to lead to two different sets of
equations, one governing the electronic motions, Eq. (1-4), and one governing the
nuclear motions, Eq. (1-11), that is the molecular vibrations and rotations.

For orders of magnitude of the electronic, vibrational, and rotational
energies we have

hZ
Wel = ITCI(Z)
and
hz
Wrot = mg

where a, is a characteristic length of the molecule. With wy;, = hv = h\/k/—M we
can also write wy = h./k/msince at equilibrium the same forces act on the electrons

and nuclei. Hence
m m
Wyib = M Wy and Wy = M Wel

The original Born—-Oppenheimer separation used an expansion® in the parameter
1 = (m/M)'* For a harmonic oscillator in its ground state we have for the average
value of the displacement, {¢*), of the system from its equilibrium position



4 MOLECULAR ELECTRONIC STRUCTURES OF TRANSITION METAL COMPLEXES

(£ = h/2nvM, where v is the classical vibrational frequency. Defining the

dimensionless quantity
B _ {mX™
n=""rt=(y (1-12)

we can see the physical background for the expansion parameter.

The equations show that for molecules of a certain size the rotational energies
are very small indeed. We shall therefore, in what follows, completely neglect the
rotational energies and only consider the electronic and vibrational motions.

1-2 THE ADIABATIC APPROXIMATION

The operators C,, contain integrals which depend on the first and second
derivatives of the electronic wave functions with respect to the nuclear coordinates.
For the diagonal terms C, , we have, recalling the normalization condition of
Eq. (1-7)

vﬂjwu(r, Q)[2dr=0

or
<\Pu(rs Q)'Vul\yu(r’ Q)> =0 (1'13)

To estimate #%/2M,{\¥,(r,Q)|V;|¥.(r,Q)> we observe that nuclei and
electrons experience roughly the same Coulombic forces, since the interaction
between them is determined by the value of |Q, — r;|. Hence VW, (r,Q) ~
VZW¥,(r, Q). We have then

h? h?

R X~
<lPu(ra Q) ' Vl l u(r’ Q)> ZMua% Wrot

2M

"

where ag is the Bohr radius and W, is the energy of a rotational quantum of the
molecule.

The electronic integrals contained in the off-diagonal operators C,, can be
evaluated by differentiating Eq. (1-4) with respect to Q,. This yields

lIJt(r’ Q)Vw}fE i %EV“\PI(T, Q) = \Pt(n Q)Vu VVI(Q) + WI(Q)VM\PI(L Q) (1_14)

Multiplying from the left by W, (r, Q) and integrating over the electronic coordinates
gives

W(Q)XW.u(r, Q) |V, | Wi(r, Q) = W (Q)KYu(r, Q)|V,|¥.(r,Q)>
+ (Vulr, Q) |V, V(r, Q)| ¥.(r,Q)>
or for the case where W, and ¥, are nondegenerate

Fulr, Q) |V, V(r, Q)| W,(r, Q)
qJu s Vﬂ \Pz s = t
Yur, Q)| V| Wilr, Q) W0)— WiQ) (1-15)
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Differentiating Eq. (1-13) we obtain
CPulr, Q) Vi [ Wulr, Q) + <V, Wu(r, Q) |V, | Wur,Q)) = 0 (1-16)

We have found that the first term of this equation is of the order of magnitude
ag . We observe that the second term in Eq. (1-16) is just (V,Pu(r, Q)| V, Yu(r, Q).
The norm of V,\¥,(r, Q) is consequently a; *. Therefore using the Schwarz
inequality
Ko 1w> | < /<bl > UT>
we get
2 hZ

h 2
. —x W,
2, CH6 QIVE ¥l Q) < 7 > W

Since we are here only interested in large molecules and ions we may neglect
the very small rotational energies. We note that under these conditions the
operator C,, disappears and that C.. reduces to the first term in Eq. (1-10).
Furthermore, provided that there are no close-lying electronic states we notice from
Eq. (1-15) that the first term in Eq. (1-10) is also small. For nondegenerate electronic
wave functions it may safely be neglected.

When all the off-diagonal operators C,, in Eq. (1-11) are thrown away, the
molecular wave function (1-6) is seen to reduce to a single term

Y = u(Q)W(r, Q) (1-17)

This form of W is called the adiabatic approximation to the molecular wave function.
In this scheme each “electronic” wave function W,(r, Q) is determined by the
“electronic” Schrédinger Eq. (1-4) and the associated nuclear wave function is
determined by the simplified form of Eq. (1-11):

hz

The nuclear functions y,,,(Q) are seen in the adiabatic approximation to be given
as the solutions to a wave equation in which the “electronic” energy W,(Q) acts as
the potential energy.

It is quite obvious from the form of Eq. (1-15) that had our electronic wave
function belonged to a degenerate set, an adiabatic wave function would have been
a very bad approximation to a molecular wave function. In this case, the coupling
operator C, , assumes great importance, and the total wave function will be of the
type shown in Eq. (1-6). This situation and its consequences are dealt with under
the heading of the Jahn-Teller effect (section 1-6).

1-3 THE NUCLEAR MOTIONS

In the adiabatic approximation, as leading to Egs. (1-17) and (1-18), W,(Q) and
%:,,(Q) are functions of the 3N cartesian coordinates of the N nuclei:

Q:(le: Qlys le’---,QNz) (1'19)
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The nuclear and electronic positions (Q,r) are measured in a laboratory-fixed
coordinate system. The nuclear kinetic operators depends upon the 3N second-
order derivatives with respect to these coordinates. In order to treat the vibrations
of the nuclei the so-called normal coordinates are introduced.* This involves
changing from the external coordinates Q to an internal molecular-coordinate
system &.

Let us assume that we can find at least one point Q° in the 3N dimensional
coordinate system for which all the first derivatives of W,(Q), with respect to
Qs are equal to zero. Thus for all u

<6W(Q)> _ (aW(Q)> N <6W(Q)> G (1-20)
0Qux /o 0Quy /oo 004z )go .
Obviously the function W,(Q) will have an extremum at the point Q°. Whether
QO represents a minimum or a maximum depends, of course, upon the values
of the second derivatives of W;(Q).

In the case where the conditions of Eq. (1-20) cannot be fulfilled, and at least
one of the 3N derivatives is different from zero for all values of the nuclear
coordinate, this simply means that the potential hypersurface cannot have a
minimum with respect to this nuclear coordinate, and that the corresponding
molecular state is unstable. However, if for some point Q°, Eq. (1-20) can indeed
be fulfilled, Q° will be taken to represent a stable configuration of the molecule
in the state W,(r, Q).

We now introduce a set of 3N mass-weighted displacement coordinates

S1, ..., Say defined as
S1= /M1 (Q1x — 0%)
S2=/M1(Q1, —
S3= J— (Q1:— 0%2) (1-21)

Sav =My (Or: — Q?:)

This transformation amounts to a translation of the Q-coordinate system followed
by a change in scale on the axes. The first and second derivatives with respect to
these displacement coordinates are seen to be

G 10 S
& 0. T M, g
: and :
G 1@ 0 i &
0w /My 00 083~ My 30%;

In this coordinate system the point S, for which all the first derivatives of the
function W,(S) vanish, obviously lies at the origin 5% =1(0,0,...,0), and we can
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expand W,(S) in a Taylor series retaining terms up to second order only:

1 0?
vwm=ww+§§<£g2l&&+~~ (1-22)
where W is the electronic energy evaluated at the origin (or equivalently at Q9
and where all terms containing the first derivatives of W,(S) are absent by virtue of
Eq. (1-20). The second derivatives of W(S) are to be evaluated at the origin, as
indicated by the subscript 0.

Introducing this transformation of coordinates into the nuclear wave Eq.
(1-18) leads to

h? 1
[—ngﬂ Wi+ 3 2 S SiSi— W,}XI(S)zo (1-23)

The potential-energy term in Eq. (1-22) is a so-called quadratic form, containing all
of the cross terms S, S;. Introducing a linear combination of all the displacement
coordinates of Egs. (1-21) we can, however, reduce the potential-energy terms to a
form in which all of the cross terms have disappeared. Taking

Cu= Z bruSik (1-24)
k
and introducing relative nuclear energies
W, =W, — W’ (1-25)
Eq. (1-23) can be written as
3N hl 62 1 KA
Zl [‘7872 * Ea’uéﬁ] x(&) = Z} Wix(Cu) (1-26)

The coordinates &, represent all of the possible movements of the nuclei. Three
of them will, therefore, describe the translations of the molecule as a whole, and
three of them will characterize the rotations of the molecule. The translations and
the rotations cannot, however, depend upon the intermolecular distances. The
potential energy terms in Eq. (1-26) associated with the translations and the
rotations, depending as they do upon the internuclear distances, must therefore be
zero. This implies that for nonlinear molecules the coefficients d to dy are zero.
(For linear molecules only d} to ds are zero.) Equation (1-26) is thereby reduced to

6 hz 52 3N hz 62 1 .3 . 3
L;(—z aﬁ) + ,,;<‘76—§+ EaLcu) = Wt}xz(éu) =0 (1-27)

The 3N — 6 linear combinations &, of the cartesian nuclear displacement
coordinates are called the normal coordinates of the molecule. They are of such a
nature as to leave the center of mass of the nuclei unaltered, and the principal
axes of inertia are likewise left unchanged. It is therefore natural to use, in the
description of the molecule, a cartesian coordinate system with origin at the center
of mass, and with the coordinate axes directed along the principal axes of inertia
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for the nuclei in the equilibrium position. Hence, in the so-called crude adiabatic
approximation we take for the molecular wave function

Wi, &) = 2u(E)Y?(r) (1-28)

where the static electronic wave function ¥ (r) is calculated at the equilibrium
position of the nuclei, as indicated by the zero superscript, and v is the vibrational
quantum number.

The totality. of all the static electronic wave functions span what has been
called a Longuet-Higgins space.® The completeness of this space implies that we
can obtain a dynamic electronic wave function as a superposition of static
electronic wave functions, that is

r, &) =Y ¥l (e (1-29)

Such an expansion is encountered in the so-called Herzberg-Teller vibronic scheme.

When changing the electronic coordinates from an external to an internal
coordinate system we must take care not to introduce translations and rotations
into our space-fixed molecule. Calling the linear momentum P and the angular
momentum L we have in the center-of-mass system with »n electrons

Puc+ Y pn=0 (1-30)

Lo + Y1 =0 (1-31)

The kinetic-energy terms of the hamiltonian are, with M =) M,, the total nuclear
mass, "

Tm P + 508 (1-32)

Substituting Eq. (1-30) into Eq. (1-32) leads to

1 = 1 o
T_2M<Zn:pn> +2m;pn = zpn + "ann Pn (1'33)
where 1, = mM/(m + M), the reduced mass. The cross terms which appear in
Eq. (1-33) constitute the so-called mass-polarization term. Due to the presence of
1/M it is very small and may be neglected in the present context. Similar, though
more complicated, are the coupling terms which appear in the preservation of the
angular momentum. However, these may also be safely ignored.
Using the crude adiabatic approximation the equations which govern the
nuclear vibrations are then given by the last part of Eq. (1-27)

3IN—-6 az 1
Zl ( 2 652 + at ftu - Lu)Xtv(ftu)z (1'34)

where v is a vibrational quantum number and ¢ specifies the electronic state. The
eigenvalues and eigenfunctions are those of the harmonic oscillator with unit mass
and force constant d,:

wh,= (v + Hh/d, = (v + 3, v=0,1,2,... (1-35)
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2
Xtu(étu) = Cv exp( = %) Hv(itu) (1'36)
where C, is a normalization constant and the functions H,(x) are Hermite
polynomials. The first polynomials are

Hyfd=1
Hylx)= 2%
Hy(x)=4x* -2

H;(x) = 8x3 — 12x

Notice that when v is even, only even powers of x occur in the Hermite polynomials,
whereas for odd values of v, the Hermite polynomials are made up solely of odd
powers.

1-4 SYMMETRY CLASSIFICATIONS AND
COUPLING COEFFICIENTS

In classical mechanics there are constants of motion, such as the energy, the linear
momentum p, and others. In quantum mechanics any operator represented by
A which commutes with # will be a constant of the motion. This we write

(Al =HA— Ax =0

Hence
AHY) = # (AYP)
I
AWY) = W(AY)

Notice that (A'P) is a solution to the Schrodinger equation whenever W is,
and it has the same eigenvalue W.

For any molecule there are a certain number of symmetry operations that
commute with #". These include the operations which rotate, reflect, or invert the
molecule into itself. Of all of these operations (including that which leaves the
molecule as it was, E) we have that any two of them are equivalent to a third.
Such a set of symmetry operations constitutes a group.® The eigenfunctions of #
form a basis for the so-called irreducible representations of the group. The
molecular states can therefore be characterized by their irreducible representations
in the point group of the molecule.

A set of functions spanning an irreducible representation is described by its
transformation properties under the symmetry operations of the molecule. Since
the traces of the transformation matrices are independent of the choice of
coordinate system, it is the various traces, called the characters, which are used as
indicators. To take an example: in the molecular symmetry O the symmetry
operators are E, 8C;, 3C,, 6C., and 6C5. The set of functions (x2), (yz), and (xy)



