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Introduction(!)

§1.

As is well known, at the beginning of the twentieth century, thanks to
the work of Cauchy, Bolzano, Weierstrass, Cantor, Dedekind, and Méray,
mathematical analysis had obtained a foundation on the basis of Cantor’s set
theory. In our opinion, the two most significant features of the set-theoretic
way of thinking are: 1) the admission of far reaching abstractions such as the
abstraction of actual infinity, permitting us to consider “completed” infinite
collections of simultaneously existing objects; and 2) the free application in
arguments about infinite collections of the usual rules of traditional logic, in
particular, the unrestricted application of the law of the excluded middle.

Set-theoretic methods permitted the passage from the vague “dynamic”
concepts of the old infinitesimal analysis to the rigorous “static” system of
concepts of the modern theory of limits. The developing, evolving natural
number sequence was replaced by the idea of the collection of all natural
numbers, and the process of becoming small, connected with infinitesimals,
was reduced to the concept of function, which, in turn, is treated by means of
an actually given “completed” set of pairs of objects, satisfying certain obvious
restrictions (in the function set there must not be two different pairs with the
same first component). The fact that the concepts are introduced in this way
are really or seemingly natural and tangible, that they are convenient to deal
with, due to the use of ordinary logical methods, stimulated to a considerable
degree the development of.-mathematical analysis and created the impression

(Y)This introduction should not be considered a sort of “constructivists’ credo”. Some of
the opinions and evaluations expressed here reflect the personal point of view of the author,
and are entirely his responsibility. A concise survey of the basic methodological ideas of
the constructive approach in mathematics and a discussion of its position with respect to
other approaches can be found in the papers of Markov [6], Shanin ([6], the Introduction
and Appendix, and [8]), in the lecture of Tseitin, Zaslavskil and Shanin [1]-[2] at the 1966
International Congress of Mathematics in Moscow, and, finally, in the author’s summary
[9] of Tseitin’s dissertation.

.
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of utmost rigor of its constructions, an impression amplified by the practical
successes of the branches of applicd mathematics based on analysis.

At the same time, the theory of sets, still in the process of construction, was
shocked by paradoxes discovered on its outskirts (see, for example, Kleene [4],
Curry [1], and Fraenkel and Bar-Hillel [1]). Although these paradoxes were not
directly related to analysis (Richard’s paradox (see Fraenkel and Bar-Hillel (1],
Chapter I, §3.1) may be an exception because of its resemblance to Cantor’s
theorem on the uncountability of the continuum; an interesting discussion of
this paradox can be found on p. 162 of Borel’s book [1], nevertheless situations
characteristic of the appearance of paradoxes already had been discovered in
such an elementary part of analysis as the theory of real numbers. This and the
extraordinarily great freedom of forming concepts (for example, Dedekind’s
continuum is the set of all sets of rational numbers satisfying certain rather
weak restrictions), as well as the use of impredicative definitions, in which
certain objects are defined in terms of sets to which they themselves must
belong (for example, the definitions of least upper and greatest lower bounds
of number sets are of this type).

On the other hand, independent of the problem of the paradoxes, there
was an unceasing criticism, going back to Gauss and Kronecker, of the initial
acceptability in principle of the basic set-theoretic ideas. Brouwer especially
stood out for his sharp and consistent criticism. This criticism (later joined
by Weyl who initially held a separate position) was accompanied by the de-
velopment of an original program for the construction of mathematics, known
now under the name “intuitionism” (or “neointuitionism”). Brouwer ahd*his
followers strongly objected to the faith in the existential character of infinite
sets as well as to the belief that traditional logic corresponds to the essence of
mathematics. According to the tenets of intuitionism, the objects of study in
mathematics are mental constructions as such “without reference to questions
regarding the nature of the constructed objects, such as whether these objects
exist independently of our knowledge of them” {Heyting (3], p. 1).

Mathematical assertions are information about constructions that have
been performed. Dealing with mental constructions requires a special logic,
without accepting, in particular, the law of the excluded middle to its full
extent (cf. Kolmogorov [2] and Heyting [3], pp. 1-2).

Intuitionism gave back to mathematical infinity its dynamic, developing
character; the completed set of natural numbers, presented in toto for our
consideration, ought to yield its place to the potentially infinite sequence of
natural numbers, infinite in its development, in the possibility of construct-
ing more and more new natural numbers. The continuum as a conglomerate
of isolated points, which corresponds badly to geometric intuition, became
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a sort of “medium of formation”, guaranteeing the possibility of unbounded
development by means of acts of choice of freely forming a sequence of de-
creasing nested rational intervals. However, although intuitive clarity is, ac-
cording to the position of the intuitionists, the principal and only criterion
of mathematical truth, it is just this criterion which, in the opinion of many
mathematicians, is often not satisfied by both the philosophical premises and
the concrete mathematical theories of intuitionism. (For example, Bishop
(2], [3] characterizes Brouwer's theory of the contmuum as revolutionary and
“semimystical”).(?) :

The polemics that developed around the paradoxes and the intuitionistic
criticism revealed the serious divergence among the greatest mathematical
thinkers in their views on the most fundamental and elementary concepts of
mathematics, and created a situation that still exists, which can be character-
ized as a crisis in the foundations of mathematics (the problems involved here’
are presented in detail in the book of Fraenkel and Bar-Hillel [1], where there
is also an extensive bibliography). Apparently it would not be an exaggera-
tion to say that today it is not so clear whether the successes of applications
are a consequence of the correct choice of the initial ideas of theoretical math-
ematics, or whether conversely these successes are themselves the source of
the faith, shared by the overwhelming majority of mathematicians, in the cor-
rectness of these ideas. In light of what has been said it is natural to seek new
ways of constructing analysis meeting the needs of the natural sciences and,
at the same time, based upon clearer initial concepts than the set-theoretic
ones.

Another side of intuitionistic criticism drew attention to the problem of
constructivity in mathematics. The immense generality attainable in set the-
ory led to poor “tangibility” of many objects of analysis. Moreover, such
objects arose not only as a result of risky constructions using the axiom of
choice, but also appeared in the most elementary parts of analysis directly
related to computational practice. Many such “existence theorems” turned
out, upon closer examination, to be devgid of computational meaning. As a
classical example, let us turn to the theorem on least upper and greatest lower
bounas of bounded number sets. It is not difficult to construct an algorith-
ic sequence {ny} of zeros and ones such that a nonzero term occurs in this
sequence when and only when Fermat’s last theorem is violated. (For this it
suffices to enumerate one after the other all quadruples of natural numbers
(z,y,2,n) (n > 2, 1,y,z > 0) and check the equation z" + y™ = z™; n, is set

(?)For a detailed acquaintance with the philosophy and mathematical pr -tice of intu-

itionism, one can turn to Heyting’s book [3], already cited, or to the monogra,n of Fraenkel
and Bar-Hillel [1].
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equal to 0 if the result of this check for the kth quadruple is negative, and to
1 otherwise.) According to the Bolzano-Weierstrass theorem, there exists a

least upper bound b of the set of values of the sequence {n,}. It is clear that ..

being able to compute b even with only an accuracy of £ we would be able to
find whether b is equal to 0 or 1. Thus, we would find out whether Fermat’s
last theorem is true or not. Similar examples—and it is easy to construct
many more—make it very doubtful that there is an effective method enabling
us to compute the least upper and greatest lower bounds of bounded sets,
even if we consider only sets of values of effectively computable sequences of
zeros and ones. ()

As a second example let us take the theorem on a zero of an alternating
continuous function. (An alternating function on an interval is one that takes
values of opposite signs at the endpoints of the interval.) Here it may seem
that the usual method used in this proof, successive division of the interval
(see, for example, Fikhtengol’ts [1], Chapter 2, §5), enables us to effectively
find arbitrarily precise approximations to a root. In fact, the matter is not
so simple: at the very first step in the computation of the zero one must find
whether the function vanishes at the center of the interval. However, it is easy
to see that the problem of determining whether a real*number is equal to 0
can be immensely difficult. In fact, let us denote by a the real number whose
integral part is equal to 0 and whose kth binary digit is equal to ng (where
{ni} is the sequence of zeros and ones considered above). It is clear that
a = 0 if and only if Fermat’s last theorem is true. The difficulties in finding a
zero of an alternating function that have been revealed by this argument are
connected, as will be shown in §4 of Chapter 5, not with special properties
of the method of successive subdivision of an interval,(*) but stem from the
core of the matter.

In both cases that we have considered, it is not hard to find in the proofs of

~

(3)The example that we have considered is convenient for elucidating the intuitionistic
denial of the law of the excludéd middle. Since Fermat’s last theoem has so far been neither
proved nor disproved it is impossible to assert constructively (constructive mathematical
assertions are assertions about performed constructions’) that the sequence {n} has a least
upper bound. The reason serving as a basis of the traditional proof, that either ny = 0 for
all k or ny # 0 for some k must be rejected as metaphysical, appealing to truth in some
absolute sense, and, therefore, going beyond the boundaries of mathematics. Of course, in
time Fermat’s last theorem may be either proved or refuted, but then one can simply take
another unsolved problem. The confidence in our ability to eventually solve any problem is
possibly an interesting theme for philosophical discussions, but, in any case, it should not
be a source of mathematical theories.

(4)With minor changes, this method can be made the basis for an algorithm that com-
putes the zeros of alternating continuous computable functions satisfying certain additional
conditions.
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the corresponding classical theorems an application of the following variant of
the law of the excluded middle: either all elements of a set A possess a given
property C, or there exists some element of A not possessing this property.
Bishop [2] picturesquely calls this principle the “principle of omniscience” and
considers it the chief culprit of nonconstructivity in classical mathematics.

The examples we have presented induce a natural desire to refine a num-
ber of the concepts that have to do with computability. For example, which
real numbers and functions are to be considered computable? What are their
properties? What is to be meant by a “general effective method” for com-
puting the least upper and greatest lower bounds of bounded sets (or for
computing zeros of alternating functions)? What should the initially given
data be that are used by such a method, and how are they to be presented,
and is it possible to somehow refine the intuitively felt impossibility of such a
method? Anticipating somewhat, we mention that, after the concepts in the
given examples have been refined in a proper way, one obtains the following
situations in the above examples. In the case of the theorem on least upper
and greatest lower bounds, one can produce an example (Specker [1]) of a
bounded, increasing algorithmic sequence of rational numbers not having a
computable least upper bound. (Thus, not only a general method for comput-
ing least upper bounds is impossible, but there occur particular, quite simple
sets not having computable least upper bounds.) In the case of Cauchy’s
theorem, an algorithm which finds the zeros of any alternating, continuous,
computable function is impossible. (As initial data such an algorithm should
use an algorithm computing the given function. We note that the desired
algorithm is impossible even for the class of piecewise linear functions of the
form f(z) + ¢, where ¢ is a computable real number and f is the function
whose graph is presented in Figure 1.) At the same time, there cannot be a
computable function that assumes values of different signs at the ends of a
given interval and does not vanish at any computable point of this interval
(a priori it is impossible to rule out the existence of computable alternating
functions, whose zeros are all “noncomputable™). These results are due to
Tseitin [2], [6].

Briefly summarizing what we have said, we can single out the following two
circles of problems.

(1) The construction of a system of analysis based on premises clearer
than those of set theory and taking into account. to a greater degree than
traditional analysis, the actual constructive and computational possibilities.

(2) The introduction and study of computable objects of analysis, the inves-
tigation of the theoretical limitations of computational possibilities in analysis,
the study of “effectivity” in analysis, and, in particular, the investigation of
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FIGURE 1

the question as to which initially given data suffice to find various objects of
analysis.

In connection with these problems there aroge various currents in the foun-
dations of mathematics and mathematical analysis, joined under the collective
name “constructive analysis”. (One uses the terms “recursive analysis” and
“computable analysis™ in a similar sense.)(®) In addition, while the investiga-
tions of problems (1) are connected with the development of various concepts
in the foundations of mathematics, the investigations of problems (2) can also
be carried out by the usual set-theoretic means.

§2.

Proceeding to a brief historical review, let us mention immediately the im-
mense service performed by intuitionism in the formation of the main concepts
of constructive analysis. Also of great importance was Weyl's book [1], already
mentioned; this book contained, in particular, one of the first approaches to
the concept of a constructive real number. '

A very substantial step in the development of constructive analysis was
the elaboration in the 1930s of the precise concept of algorithm, thanks to the
work of Herbrand, Godel, Turing, Post, Church, and Kleene. (In fact, several
outwardly different concepts were proposed; however, they turned out to be
equivoluminous.) Basing themselves on precise concepts of algorithm (Tur-
ing machines and recursive functions, respectively), Turing [1] -[2] and Banach

(>)We do not here go into the subject of “predicative analysis”, which had it beginning
in the monographs of Whitehead and Russell [2]-{3] and Weyl [1]. In predicative analysis,
the objects dealt with are introduced by way of individual definitions within a framework
of certain fixed means; . in this connection, special attention is paid to the exclusion of
impredicative formation of concepts (for more details, see Feferman [1]).
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and Mazur [1)(®) independently offered in 1936-37 definitions of a computable
(constructive) real number. In his first paper, Turing defined a computable
real number as a number admitting a computable decimal expansion.(”) In a
subsequent correction (Turing [2]), this definition was changed; it was found
that the (at first glance) natural linking of computability of numbers with
computability of their systematic representations in a fixed number system
had a host of fundamental deficiencies. We shall indicate only two of them:
1) for any two number systems there may not be an algorithm which enables
us to go over from computable expansions in the first system to computable
expansions in the second (see the Mostowski-Uspenskii theorem in §3 of Chap-
ter 4); 2) for any fixed number system, there is no algorithm for adding real
numbers which are computable with respect to this system. Dispensing with
technical details, one can say that, in his revised definition, Turing connects
the computability of a real number r with the existence of a computable
sequence 2 of rational numbers (that is, an algorithm transforming every
natural number into a rational number)(*) such that, for every n.

A(n) — x| <27 (3)

Although this definition cannot be accepted under a thoroughly constructive
interpretation because of the traditional concept of real number cccurring in
it, the idea contained in it easily enables us to define constructive real numbers -
from the beginning without appealing to other concepts of real numbers. To
do this it suffices to replace (3) by the condition

|A(n) —A(m)| < 27" for m > n, (4)

and to mean by constructive (computable) real numbers computable sequences
of rational numbers satisfying (4).

The concept of constructive (computable) real number just presented
(which the constructive numbers considered in this book also satisfy) ap-
parently can be considered to be definitive. It is interesting to notice that
Turing mentions the influence on his definition of some ideas of Brouwer.

The investigations begun by Turing, Banach and Mazur were continued in
the postwar years. In 1949 there appeared a paper by Specker (1] in which,

(5)Reference [1] gives only the title of a lecture given in Lwow on January 23, 1937 at
a meeting of the Polish Mathematical Society. Some information about its content can be
found in Mostowski's survey [1].

(T)According to Mostowski [1]. Banach and Mazur considered real numbers with prim-
itive recursive decimal expansions.

(8)Of course, we have in mind here an algorithm in the precise sense of the word (for
example, a Turing machine). We remark that computability of sequences of rational num-
bers reduces in an obvious way to computability of arithmetic functions (that is, functions
with natyral numbers as arguments and values).
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along with a profound study of primitive recursive computable objects of
analysis (real numbers and functions), there was given a famous example of a
nondecreasing bounded algorithic sequence of rational numbers which is not
computably convergent. (This result has already been mentioned above in
connection with the problem of least upper bounds.) In more precise terms,
'for Specker’s sequence & there cannot exist a general recursive function h
such that, for any 7,7 and n satisfying the inequality 7. j > h(n),

16() -6() <27

Thus, the rate of convergence of this sequence (meaning the convergence as-
serted by the well-known classical theorem) cannot be effectively estimated.

Various representations of computable real numbers were studied further in
the papers of Péter [1] (1950) (Péter’s results also were presented in her well-
known monograph [2]), Myhill [1] (1953), Meschkowski [1] (1956), and Rice [1]
(1954). Rice's paper presents, in particular, an especially lucid construction
of the Specker example considered above. )

In the academic year 1949-1950, in a lecture course at the Institute of
Mathematics of the Polish Academy of Science, Mazur gave a thorough pre-
sentation of the results on computable analysis obtained by him before the
war jointly with Banach, as well as his own postwar results. The notes of these
lectures were published later (1963), with the help of Rasiowa and Grzegor-
czyk, in the form of a monograph (Mazur [1]). Mazur’s monograph contains,
in particular, a concise and profound presentation of the theory of computable
real numbers and functions. Along with the general concept of computable
real number, similar to Turing’s and parallel to Cantor’s definition in tradi-
tional analysis, this monograph also studies other possibilities of defining a
computable real number (systematic expansions, Dedekind cuts). Primitive
recursive computability is also studied.

Mazur identifies intuitive computability in the domain of natural numbers
with general recursiveness. His approach to the definition of computable ob-
jects of more complex types is very distinctive. For example, let us take
a look at the definition of computable functionals over arithmetic functions
with natural numbers as values. A functional (in the traditional sense—Mazur
freely uses concepts of set-theoretic mathematics) is said to be computable if
it transforms every computable sequence of computable arithmetic functions
(such a sequence is given by a two-place general recursive function) into a’
computable sequence of natural numbers. In more precise terms, for a co-
mutable functional @, for any two-place general recursive function f there
exists (the proof of this existence can be carried out by using any mathe-
matical means) a general recursive function g such that g(n) = ®(f(n,m)).
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(Here, f(n,m) is considered as a function of m for every fixed n.) In this
order of ideas, one also defines computability of real functions: a function
¢ is computable if it transforms every computable sequence of computable
real numbers into a computable sequence of computable real numbers. Here,
computable sequences of computable real numbers are interpreted by means
of two-place computable (jointly in both arguments!) approximating ratio-
nal functions. (This is actually equivalent to our definition of sequences of
constructive real numbers in §1 of Chapter 3.) One of the remarkable results
presented in Mazur’s monograph is a theorem on the continuity of computable
(in the sense indicated above) functionals and real functions. This theorem
is close to a theorem of Markov on the impossibility of constructive discon-
tinuities for computable real functions (for a somewhat different concept of
computable function; see Markov [3], [5]). Mazur’s study served as a starting
point for a series of papers (Grzegorczyk [2]-[5], Mostowski [2], Lehman [1],
Lachlan (1], Friedberg [2], Klaua [1]-[4] and Ilse [1]), whose extent, depth,
and distructiveness permit us to speak about a Polish school of computable
analysis.

In Mostowski’s paper (2] (1957), various ways of defining computable se-
quences of computable real numbers were studied; among the results obtained
is a theorem completely solving the problem of the possibility of an effective
passage from computable expansions in one number system to computable
expansions in another system. Such a passage from a system with base m to
a system with base n turns out to be possible if and only if all prime divisors
of n are prime divisors of m (see §3 of Chapter 4; this theorem also was found
independently by Uspenskii [2], [3]). Some questions left open in this paper
were solved by Lehman [1] and Lachlan [1].

In the fundamental paper of Grzegorczyk [2] (1955), a new and original ap-
proach to the definition of computable real function was proposed. The start-
ing point is everywhere defined computable functionals over natural numbers
and arithmetic functions, with natural numbers as values. The Grzegorczyk-
computable functionals have a genetic character: every such functional is
obtained from very simple initial functionals by means of a finite number of
applications of certain rules (similar to the corresponding rules in the the-
ory of partial recursive functions.)(®) Starting from functionals with natural
numbers as values, one can easily introduce in a natural way computable
functionals over integral-valued functions, with integers as values.

In Grzegorczyk's definition the computability of an everywhere-defined real
function ¢ is connected with the existence of a Grzegorczyk-computable func-

(®)As observed by Kellene [3], a Grzegorczyk functional is identical with an everywhere-
defined general recursive functional (see Kleene [4]).
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tional transforming every integral-valued function which approximates an ar-
bitrary real z into a function approximating ¢(x). (A function f (not neces-
sarily computable!) approximates z if, for all n,

f(n) 1
(n+1) (n+1)

From the definition of Grzegorczyk functionals, their continuity (in the Baire
metric) follows: for fixed natural number arguments, the value of a com-
putable functional at given functions fy,..., f, is determined by some initial
interval of values of these functions. Using this fact and the fact that com-
putable functionals are everywhere defined Grzegorczyk proved with the help
of a theorem of Borel on coverings that a real function which is computable
in his sense is computably uniformly continuous on every segment. Grzegor-
czyk’s ideas were developed further by the German mathematician Klaua;
Klaua’'s results are summarized in his monograph [4].

Beginning in 1955. there were published, primarily in the Comptes Rendus
of the French Academy of Sciences, a series of papers by Lacombe, Kreisel,
Shoenfield, and Friedberg (also sec the Proceedings of the Colloquium on Con-
structivity in Mathematics (Amsterdam. 1957; Heyting [4])). Among the fun-
damental results obtained by these authors, let us mention the following.(1?)
Kreisel, Lacombe and Shoenfield [1], [2] proved the computable continuity of
effective functionals over the Baire space of general recursive functins. La-
combe [2] established the existence of computable real functions which are
not uniformly continuous. Lacombe [2]. [4] constructed an example of a com-
putably uniformly continuous, computable function which does not achieve its
maximum at any computable point (the example constructed by Kleene [2] of
an infinite tree with finite branching, all of whose general recursive paths are
finite) may serve as the source. Kreisel and Lacombe [1] proved the existence
of singular interval coverings (see §1 of Chapter 8).

The characteristic feature of these papers is the fact that their athors were
mainly interested in the circle of problems (2) of §1, and do not find them-
selves by any specific concepts in the foundations of mathematics. Concepts,
methods, and results of set-theoretic mathematics are freely used in definitions
and proofs. The-advantage of this approach is its great flexibility, which en-
ables the authors in question, to obtain, in particular, very interesting results
characterizing the relationships between computable and noncomputable ob-
Jects, as well as the possibility of presenting computable analysis on the basis

('9)Similar results were obtained at the same time in the Soviet Union by I. D. Za-
slavskii and G. 8. Tseitin (Zaslavskii (1], [2]. [4] on computable functions with unusual
properties, Tseitin |31 /5] on continuity theorems. and Zaslavskii and Tseitin [1]. [2] on
singular coverings). The Soviet school of constructive analysis will be discussed below.
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of ordinary language and the well-developed symbolism of traditional math-
ematics. At the same time, the criticism to which the set-theoretic way of
thinking has been subjected also carries over to these results, which makes
this method poorly suited for researchers interested in the circle of problems
(1) (that is, the initial “self-contained” construction of constructive analy-
sis). We must mention that, in many cases, set-theoretic methods can be
eliminated, which permits us to use a significant part of the achievements of
the traditional systems of computable analysis within a thoroughly construc-
tive approach. However, the matter is not always so simple: for example,
the definition of Grzegorczyk-computable real functions is so permeated by
set-theoretic concepts (arithmetic function, real number) that even the formu-
lation of meaningful analogues of this definition, not to speak of the theorem
on uniform continuity, within the framework of a nontraditional system of
analysis (like the one developed in this book, say), appear nontrivial.

Along with the papers that we have considered, attempts were also made
to construct nontraditional systems of computable analysis. It is necessary
here to talk first of all about Goodstein’s recursive analysis.(!!) (Goodstein’s
first paper on this subject, submitted in 1941, actually appeared in 1945:
Goodstein’s investigations were collected in two of his monographs [1] and (2],
combined into one book in the Russian translation [5].) The characteristic fea-
ture of Goodstein’s approach is the tendency to construct recursive analysis
on the simplest possible logical basis—namely, on the basis of primitive recur-
sive arithmetic or, more precisely, on the basis of an original axiomatic theory
developed by him for certain classes of arithmetic functions (Goodstein’s equa-
tion calculus; for a more detailed general description of the equation calculus
and of Goodstein’s approach, we refer the reader to a paper of Shanin [8]).
The objects under consideration are recursive (most often, primitive recursive)
functions over the field of rational numbers with rational values, as well as re-
cursive sequences of such functions, given by two-place recursive functions. In
the construction of analysis, Goodstein consistently employs approximation
methods, whereby objects which usually arise in analysis from approximations
as a result of limit operations are not, as a rule, introduced. For example, the
concept of recursive real function actually is absent from Goodstein’s work,
although a reader possessing some conception of real function can without dif-
ficulty find sequences of rational approximations which lead to such functions.
The merit of this methodology is the logical simplicity of the concepts that
are used; at the same time, it is not devoid of certain deficiencies, in the opin-

(*')We shall not deal now with intuitionistic analysis, which occupies quite a special
place (see Heyting [3]); its fruitful influence on practically all researchers in this area has
already been mentioned.
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ion of the author—as the number of limit passages that are not designated
in any way increases, so does the awkwardness (but not the corr;plexity!) of
definitions and formulations of theorems. On the whole, analysis acquires a
very unusual form that makes it substantially more difficult for a mathemati-
cian interested in the circle of problems (2) from §1 to relate the results thus
obtained to familiar mathematical structures.

It should be noted that Goodstein’s papers apparently were the first to
study mean-value theorems systematically from the point of view of a rigor-
ous theory of algorithms, and to suggest a fruitful approach to establishing
recursive analogues of these theorems, which, instead of an object giving the
desired value of the function, determined a recursive object which gives the
required value to within a preassigned fixed accuracy. This kind of e-variant
of existence theorems is sometimes called a theorem of Goodstein type.

In 1966-67 the well-known American mathematician Errett Bishop came
forward with an original and extremely advanced system of constructive anal-
ysis (see his monograph (2] (1967) as well as the summaries [1] and [3] of
his lecture at the 1966 International Congress of Mathematicians in Moscow).
Bishop’s constructive analysis occupies an intermediate position between intu-
itionistic analysis and systems using a precise concepts of algorithm. Allying
himself with the intuitionistic criticism of set-theoretic mathematics, Bishop,
at the same time, tends to avoid what he calls “preoccupation with the philo-
sophical aspects of constructivism at the expense of concrete mathematical
activity”. He rejects intuitionistic theorems like Brouwer’s fan theorem, which
implies the uniform continuity of intuitionistic real functions, as well as claims
that the precise notions of algorithm give complete expression to the essence
of computability (Church’s thesis, Turing’s thesis, the principle of normaliza-
tion). All of them contain supramathematical, and therefore unacceptable,
assumptions. Bishop develops his constructive analysis, up to the presenta-
tion of deep results concerning the theory of functions of a complex variable
and functional analysis, on the basis of an intuitive concept of constructiv-
ity, assuming, in particular, initial intuition of the natural numbers and their
arithmetic, and the view that every mathematical assertion must, in the fi-
nal analysis, express some fact of a computational nature about the natural
numbers (this or that computation on natural numbers yields this or that
result). Bishop’s monograph [2], written with great pedagogical skill, per-
mits us to assert the definite and significant success of this program. This

~fact, however, in no way diminishes the importance of investigations using
rigorous concepts of algorithm. Those investigations have the advantage of
greater precision in the formulation of problems and the possibility of proving
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the undecidability of many natural algorithmic problems,(!?) and, finally, the
possibility of studying specific properties of objects that are computable in the
precise sense. That the results obtained here are interesting is obvious, since
even the few mathematicians who, like Bishop, deny the absolutistic claims
of the rigorous concepts of algorithms apparently recognize their very great
generality.

It appears very plausible that most of Bishops’s results can also be inter-
preted within systems of analysis based on a precise concept of algorithm.

The system of constructive analysis presented in this book belongs to the
so-called constructive approach to mathematics, the principal tenets of which
were suggested in 1948-1949 by A. A. Markov. The formation of the basic
concepts of this system took place in the 1950s; at that time were also obtained
the most fundamental results, which determined the contemporary features
-of the theory. Here it is necessary to indicate, first of all, the ground-breaking
contribution of A. A. Markov himself, as well as those of his students N. A.
Shanin, 1. D. Zaslavskii, and G. S. Tseitin. A brief characterization of the
constructive approach and of the constructive analysis built up within its
framework will be presented in the following sections. Below, the adjective
“constructive” will be used (except in specially designated cases) to indicate
that this or that method, result, etc. belongs to the constructive approach to
mathematics. In particular, the term “constructive analysis” is assigned to
the system presented by us.

Finishing our brief survey, we note that even very remote areas of math-
ematics have been studied from the points of view that we have mentioned
(especially in recent years). In this connection, in addition to Bishop’s mono-
graph and the chapters of Martin-Lof’s monograph [1]('3) devoted to measure
theory, one can mention the approach to the formulation of a constructive the-
ory of Lebesgue measure and integral proposed by Shanin [2], [6], the series
of papers devoted to the same theme by the Czechoslovak mathematician
Demuth {1]-[16], the papers of Kosovskil [1]-[4] and Lorents [1] on the con-
structive theory of probability, the papers of Manukyan [1] and Lifshits [4],
[5] on constructive functions of a complex variable, the papers of Orevkov [1],
(2], [4], and Zaslavskil and Manukyan [1] on combinatorial topology, and the
work of Phan Dinh Digéu [1]-[9] on constructive linear topological spaces and
generalized functions (the papers just enumerated belong to the constructive

(*2)Here there is a definite similarity with the progress achieved by use of the rigorous
concepts of algorithm in the study of well-known algorithmic problems of logic, number
theory, algebra, and topology.

(13)This immensely interesting monograph, which also contains a concise outline of the
£lementary problems of computable analysis, was unfortunately not available to the authors
while he was working on this book.
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approach), and also the investigations of Lacombe [6] and Nogina [1] (3] on
recursive general topology.

Finally, thanks to the work of A. N. Kolmogorov and his students (Martin-
Lof, Levin, and others; see the survey article by Zvonkin and Levin [1]), it has
recently been made clear that a fruitful application of the theory of recursive
functions to the foundationstof information theory and probability theory is
possible.

£3.

The constructive approach to mathematics can be characterized by the
following main features (cf. Markov [6], and Tseitin, Zaslavskii and Shanin
1, [2

L. The objects of study are constructive objects, in dealing with which the
abstraction of potential realizability is admissible but the abstraction of actual
infinity is completely excluded.

II. The intuitive concepts of “effectivity”, “computability”, etc. are con-
nected with a precise concept of algorithm.

I11. One uses a special interpretation of mathematical judgments which
takes into account the specific nature of constructive objects.

The constructive approach arose from roughly the same basis of criticism
as intuitionism; at the same time, the positive programs of these two move-
ments have fundamental differences. Constructivism is very remote from the
philosophical premises of intuitionism as well as™from specific intuitionistic
theories—especially those theories which use free-choice sequences and which
play one of the central roles in intuitionistic mathematics. The widespread
belief in the closeness (or even the 1denm}, of intuiticnistic and constructive
mathematical practice must be recognized as a profound error.

On the whole, constructive mathematics uses a considerably more “mod-
est” system of abstractions than traditional mathematics. This fact, however,
is not in itself evidence of limited possibilities for applying constructive the-
ories. The external world does not impose on us the necessity of substances
more general than constructive objects, or the idea of actual infinily (the lat-
ter has already been pointed out by Hilbert [1]). In fact, the constructive
analysis developed within the constructive approach can already scrve as a
theoretical basis for the usual applications of differential and integral calcu-
lus. The development of events in this direction has been held back bath hy
educational traditions and by the comparative awkwardiiess of con

tructive
theories. Whether this awkwardness is an inevitable “payment for construc-



